
Lightweight Asynchronous Verifiable Secret Sharing with Optimal
Resilience

Victor Shoup1 ID and Nigel P. Smart2,3 ID

1 Offchain Labs, New York, USA.
2 COSIC, KU Leuven, Leuven, Belgium.

3 Zama Inc., Paris, France.
victor@shoup.net, vshoup@offchainlabs.com
nigel.smart@kuleuven.be, nigel@zama.ai

March 7, 2024

Abstract. We present new protocols for Asynchronous Verifiable Secret Sharing for Shamir (i.e.,
threshold t < n) sharing of secrets. Our protocols:
– Use only “lightweight” cryptographic primitives, such as hash functions;
– Can share secrets over rings such as Z/(pk) as well as finite fields Fq;
– Provide optimal resilience, in the sense that they tolerate up to t < n/3 corruptions, where n is

the total number of parties;
– Are complete, in the sense that they guarantee that if any honest party receives their share then

all honest parties receive their shares;
– Employ batching techniques, whereby a dealer shares many secrets in parallel, and achieves an

amortized communication complexity that is linear in n, at least on the “happy path”, where no
party provably misbehaves.

https://orcid.org/0009-0003-6996-5660
https://orcid.org/0000-0003-3567-3304

Table of Contents

1 Introduction . 4

1.1 Information Theoretic vs Computational Security . 5

1.2 The space in between: “lightweight” cryptography . 5

1.3 Fields vs Rings . 6

1.4 Application to AMPC . 7

1.5 The rest of the paper . 8

2 Polynomial interpolation, Reed-Solomon codes, and secret sharing . 8

2.1 Polynomial interpolation . 9

2.2 Reed-Solomon codes . 9

2.3 Asynchronous verifiable secret sharing . 9

2.3.1 Completeness. 10

2.4 Higher-level secret sharing interfaces . 11

2.5 The number of roots of a polynomial . 12

3 Subprotocols . 13

3.1 Random Beacon . 13

3.1.1 Implementing a random beacon. 14

3.1.2 Extending the output space of a random beacon. 15

3.2 Reliable broadcast . 15

3.2.1 Bracha broadcast. 17

3.2.2 Compact broadcast. 17

3.2.3 Other reliable broadcast protocols. 18

3.2.4 Relation to AVID. 20

3.2.5 One-sided voting. 20

3.3 Secure Message Distribution . 21

4 Building Secure Message Distribution . 23

4.1 Reliable Message Distribution . 24

4.1.1 Correctness and completeness. 24

4.1.2 Communication complexity. 24

4.1.3 Relation to AVID. 26

4.2 Secure Key Distribution . 26

4.2.1 Correctness and completeness. 27

4.2.2 Proving privacy under the linear hiding assumption. 28

4.2.3 Domain separation strategies for H. 29

4.2.4 Communication complexity. 29

4.3 A Secure Message Distribution Protocol . 29

4.3.1 Security and completeness. 29

4.3.2 Communication complexity. 31

5 Our AVSS protocol . 31

5.1 Description of the protocol . 31

5.1.1 Additional commentary. 32

5.2 Security analysis . 35

5.3 Communication Complexity . 39
5.3.1 The Happy Path. 39
5.3.2 Finite Field Case. 40
5.3.3 Galois Ring Case. 41
5.3.4 The Unhappy Path. 41
5.3.5 Message complexity. 41

6 Restricting the secrets to a subring . 41
6.1 Auxiliary rings . 42
6.2 Two special cases . 43
6.3 The protocol . 43
6.4 Security analysis . 44
6.5 Communication complexity . 47

6.5.1 Setting k′ := k. 47
6.5.2 Setting R := 1. 47

7 Random oracle implementations . 48
7.1 A random oracle version of Πavss1 . 48

7.1.1 A subprotocol for disseminating 3-move conversations. 48
7.1.2 An AVSS protocol. 50

7.2 A random oracle version of Πravss1 . 51
Acknowledgements . 53
References . 53

3

1 Introduction

We present new protocols for asynchronous verifiable secret sharing (AVSS). An AVSS
protocol allows one party, the dealer, to distribute shares of a secret to parties P1, . . . , Pn. Important
properties of such a protocol are correctness, which means that even if the dealer is corrupt, the
shares received by the honest parties are valid (i.e., they correspond to points that interpolate a
polynomial of correct degree), and privacy, which means that if the dealer is honest, an adversary
should only learn the shares held by the corrupt parties. A third property that is important in many
applications is completeness, which means that if the dealer is honest, or if any honest party obtains
a share, then eventually all honest parties obtain a share. In this paper, we will only be interested in
AVSS protocols that satisfy the completeness property: some authors also call this asynchronous
complete secret sharing (ACSS). Our protocols allow the dealer to share secrets that lie in a
finite field Fq, or more generally a finite ring, such as Z/(pk).

In the asynchronous setting, we assume secure (authenticated and private) point-to-point chan-
nels between parties, but we do not assume any bound on how quickly messages are transmitted be-
tween parties. In defining completeness, “eventually” means “if and when all messages sent between
honest parties are delivered”. While there is a vast literature on secret sharing in the synchronous
communication model, there has been considerably less research in the asynchronous model. We
feel that this is unfortunate, as the asynchronous model is the only one that corresponds to the
practical setting of a wide area network. For this reason, we focus exclusively on the asynchronous
model.

It is well known that any AVSS protocol can withstand at most t < n/3 corrupt parties. If an
AVSS protocol can withstand this many corruptions, we say it provides optimal resilience. In
this paper, we will focus exclusively on AVSS protocols that provide optimal resilience.

We are mainly focused here in designing AVSS protocols with good communication complexity.
We define the communication complexity to be the sum of the length of all messages sent by honest
parties (to either honest or corrupt parties) over the point-to-point channels. That said, we are
interested protocols with good computational complexity as well.

In many applications, it is possible to run many AVSS protocols together as a “batch”. That
is, a dealer has many secrets that he wants to share, and can share them all in parallel. Please note
that such “batched” secret sharing operations are not to be confused with “packed” secret sharing
operations: in a “batched” secret operation (a technique used, for example, in [DN07]), many secrets
are shared in parallel, resulting in many ordinary sharings, while in a “packed” secret sharing (a
technique introduced in [FY92]), many secrets are packed in a single sharing. With “packed” secret
sharing, one must sacrifice optimal resilience, which we are not interested in here. Our focus will
be exclusively on “batched” secret sharing. With “batching”, it is still possible to achieve optimal
resilience, while obtaining very good communication and computational complexity in an amortized
sense (i.e., per sharing).

We also make a distinction between the “happy path” and the “unhappy path”. To enter the
“unhappy path”, a corrupt party must provably misbehave. If this happens, all honest parties will
learn of this and can take action: in the short term, the honest parties can safely ignore this party,
and in the longer term, the corrupt party can be removed from the network. Also, such provable
misbehavior could lead to legal or financial jeopardy for the corrupt party, and this in itself may
be enough to discourage such behavior. Note that the “happy path” includes corrupt behavior that
cannot be used as reliable evidence to convince other honest parties or an external authority of
corrupt behavior — this includes collusion among the corrupt parties, as well as behavior that may

4

clearly be seen as corrupt by an individual honest party. For these reasons, we believe it makes
sense to make a distinction between the complexity of the protocol on the “happy path” versus the
“unhappy path”.

1.1 Information Theoretic vs Computational Security

Up until now, most research in this area has been focused in two different settings: information
theoretic and computational.

In the information theoretic setting, security is unconditional, while in the computational set-
ting, the protocol may use various cryptographic primitives and the security of the protocol is
conditioned on specific cryptographic assumptions. In the information theoretic setting, one can
further make a distinction between statistically secure protocols, which may be broken with some
negligible probability, and perfectly secure protocols, which cannot be broken at all. We shall not
be particularly interested in the distinction between statistical and perfectly secure information
theoretic protocols in this paper.

In the cryptographic setting, the cryptography needed is often quite “heavyweight”, being based,
for example, on the discrete logarithm problem or even pairings.

– The state of the art in batched, complete AVSS protocols over finite fields with optimal resilience
in the information theoretic setting (with statistical security) is the protocol from [CP23], which
achieves amortized communication complexity that is cubic in n.

– In contrast, the state of the art in batched, complete AVSS protocols over finite fields with
optimal resilience in the computational setting is the protocol from [AJM+23], which achieves
amortized communication complexity that is linear in n. This protocol relies on discrete loga-
rithms and pairings (although as noted in [GS22], pairings are not needed to achieve the same
result if we amortize over larger batches).

For both of these protocols, the complexity bounds are worst case bounds (making no distinction
between a “happy path” and a “unhappy path”).

1.2 The space in between: “lightweight” cryptography

In this paper, we explore the space between the information theoretic and computational settings.
Specifically, we consider the computational setting, but where we only allow “lightweight” cryp-
tographic primitives, such as collision resistant hash functions and pseudorandom functions. In
one of our protocols, we need to make a somewhat nonstandard (but entirely reasonable) assump-
tion about hash functions: a kind of related-key indistinguishability assumption for hash functions,
which certainly holds in the random oracle model [BR93]. In another protocol, we fully embrace the
random oracle model, which yields an even simpler and more efficient protocol. Both protocols are
batched, complete AVSS protocols with optimal resilience that achieve communication complexity
that is linear in n on the “happy path” and quadratic in n on the “unhappy path”.

We believe there are several reasons to explore this space of protocols that rely only on
“lightweight” cryptography:

– Such protocols are potentially harder to break than protocols that rely on such things as discrete
logarithms and pairings. In particular, they provide post-quantum security.

5

– Such protocols will typically exhibit much better computational complexity than those that rely
on “heavyweight” cryptography. For example, the protocol in [AJM+23] requires that each
receiving party perform a constant number of exponentiations and pairings per sharing (in an
amortized sense). In contrast, in our protocol, each receiving party only performs a constant
number of field operations and hashes per sharing (again, in an amortized sense, at least on the
“happy path”).

Moreover, using any form of cryptography can allow improvements in both communication and
computational complexity over protocols using only information theoretic tools.

Our protocols do not require any public-key cryptography. However, as we shall point out, in a
practical implementation, it might be advantageous to sparingly use some public-key cryptographic
techniques in certain places.

1.3 Fields vs Rings

To our knowledge there has been no work in the asynchronous setting for VSS protocols sharing
secrets over rings such as Z/(pk), with all prior work in the setting focused on sharing elements
in finite fields Fq. In the synchronous setting there has recently been an interest in MPC over
rings such as Z/(pk), see, for example: [CDE+18,OSV20,CKL21,EXY22] in the dishonest majority
(and computational) setting; [ACD+19,ACD+20] in the honest majority setting (and information
theoretic) setting; and [JSv22] in the honest majority setting (and computational) setting.4 The
heart of the protocol [ACD+19] is a synchronous VSS protocol for elements in Z/(pk), which itself
is a natural generalization of the method for fields from [BTH06,BTH08]. The methods from these
last two papers are perfectly information theoretically secure.

Another approach, related to [BTH06,BTH08], is that of [DN07]. This is a statistically secure
information theoretic MPC protocol that works in the synchronous setting with honest majority,
which at its heart performs a highly efficient batched VSS protocol over the finite field Fq. The batch
is proved to be correct using a probabilistic checking procedure, which has a negligible probability
of being by-passed by an adversary (a similar probabilistic check was used in a different context in
[BGR98]). While [DN07] provides only statistical security, its advantage over other techniques is
the fact that the batch sizes are larger, resulting in a greater practical efficiency.

In the synchronous setting, generalizing these results from fields to Galois rings appears at first
sight to be tricky. The field results are almost all defined for Shamir sharing, which in its standard
presentation for n players over Fq, requires n > q. When working with rings such as Z/(2k) it is not
clear, a priori, that the theory for fields will pass over to the ring case. However, by using so-called
Galois rings and carefully defining the Shamir evaluation points and other data structures, the
entire theory for fields can be carried over to the ring setting with very little change. The original
work in this space for rings can be traced back, at least, to [Feh98], with a more complete treatment
being provided in [ACD+19]. The latter paper generalizes the synchronous protocol from [BTH08]
to the case of Z/(pk) completely.

In this work we initiate the study of asynchronous VSS protocols for rings. As explained above
we focus on a middle ground which utilizes lightweight cryptography. Our motivating starting
point is the underlying batched synchronous VSS protocol contained in [DN07]. At a high level,
this protocol works in the following steps:

4 For specific access structures, secret sharing over Z/(pk) for practical protocols is much older, going back to at
least the original Sharemind protocol [BLW08].

6

1. The sharing party shares a large number of values.

2. After the shares are distributed a random beacon is called in order to generate a random value.
In [DN07] this is instantiated with a “standard” traditional VSS protocol.

3. Using the value from the random beacon random linear equations on the originally produced
shares are computed and opened. The checking of these random linear combination for correct-
ness implies the original shares are correct, with a negligible probability of success.

We follow the same strategy, but we need to modify this slightly, not only to deal with our asyn-
chronous network situation, but also to deal with the potential uses of rings such as Z/(pk).
In [DN07], a single linear equation is checked over a field extension, in the case of small q, in
order to obtain an appropriate soundness level. In our case we will check multiple such equations
in parallel, relying on a generalization of the Schwarz-Zippel lemma to rings.

Another technique we employ, to move from the synchronous setting of [DN07] to our asyn-
chronous setting, is the “encrypt then disperse” technique from [YLF+22]. However, as developed
in [YLF+22], this technique relies on “heavyweight” cryptography, including discrete logarithms
and pairings. We show how to replace all of this “heavyweight” cryptography by “lightweight”
cryptography.

In [DN07] the shared secret is guaranteed to be an element in Fq if q is large enough to support
Shamir secret sharing over Fq, i.e. n < q. When sharing secrets in Z/(pk) (or a small finite fields
Fq with n ≥ q), the shares themselves lie in a Galois ring (or field) extension. In fact, a corrupt
dealer might share a secret that lies in the extension, rather than in the base ring (or field). In most
applications of our AVSS protocol, this will not be an issue (for example, in producing multiplication
triples for MPC protocols); however, in some applications, we really need to ensure that the shared
elements are indeed in the base ring (or field) and not some extension. In this situation, we require
further machinery which we introduce.

1.4 Application to AMPC

Of course, as has already been alluded to, one of the main applications of AVSS over fields is
to asynchronous secure multiparty computation (AMPC), especially in the information
theoretic setting. The state of art for AMPC with optimal resilience for arithmetic circuits over
finite fields in the information theoretic setting is the protocol from [CP23], whose communication
complexity grows as n4 · cM , where cM is the number of multiplication gates in the circuit to be
evaluated.

We can use our new “lightweight” cryptographic AVSS protocols as a drop-in replacement
for the information-theoretic AVSS protocol in [CP23], which yields an AMPC protocol whose
communication complexity grows as n2 · cM on the “happy path” and n3 · cM on the “unhappy
path”. One can easily improve the communication on the “happy path” to n · cM by assuming that
t < (1/3− ϵ) ·n for some constant ϵ. Alternatively, one can achieve the same communication bound
with t < n/3 at least on a “very happy path” where at least (2/3+ ϵ) ·n parties are actually online
and cooperative and network delay is bounded (which in practice is often reasonable to assume).
Indeed, the technique in [CP23], which derives from [CP17], involves a step where we have to
wait for n − t parties to each contribute sharings of validated Beaver triples. From this collection
of sharings, some number of truly random shared triples may be extracted. Unfortunately, when
n = 3t + 1, and we only collect n − t = 2t + 1 triples, this extraction process yields only one
truly random triple. However, in practice, it may make sense to just wait a little while to try to

7

collect more triples. Indeed, if we can collect (2/3+ ϵ) ·n triples, we can extract Ω(n) truly random
triples. Hence, on this “very happy path”, the communication complexity grows as n · cM . Note
that this pragmatic approach to reducing the communication complexity on this “very happy path”
is still secure assuming t < n/3 — so we still obtain optimal resilience, but we also obtain linear
communication complexity per multiplication gate on this “very happy path”.

As is well known, one can realize AMPC in the computational setting without using AVSS.
Indeed, the state of art for AMPC with optimal resilience in the computational setting is the
protocol from [Coh16], which has a communication complexity that is independent of the circuit size.
This protocol relies on very “heavyweight” cryptography: threshold fully homomorphic encryption
and threshold signatures. Using somewhat less “heavyweight” cryptography, namely, additively
homomorphic threshold encryption, the protocol in [HNP08] has communication complexity that
grows as n2 · cM .

So we see that with our new AVSS protocols, one can achieve secure AMPC in the computational
setting with very good communication complexity using only “lightweight” cryptography.

As has already been mentioned, our lightweight AVSS protocol works not only over fields but
over rings such as Z/(pk). These rings offer many advantages for various forms of MPC computation,
especially when the ring is chosen to be Z/(2k). It remains an open question as to how the above
techniques for AMPC can be extended from fields to rings, given our AVSS protocol as a building
block. In future work, we aim to investigate this in our context of utilizing lightweight cryptography.

1.5 The rest of the paper

In Section 2, we review basic concepts such as polynomial interpolation, Reed-Solomon codes, and
secret sharing. In particular, in Section 2.3, we give the formal definition of AVSS that we will
use throughout the paper. In Section 3, we review the subprotocols we will need to build our new
AVSS protocols. Some of these subprotocols are standard, some are slight variations of standard
protocols, and some are new. In particular, in Section 3.3, we define a new type of protocol, which
we call a secure message distribution protocol. In this section, we just state the properties such a
protocol should satisfy, and then in Section 4 we show how to build one. In Section 5, we present
and analyze our new AVSS protocol. In Section 6, we extend our AVSS protocol to ensure that the
secrets shared by a corrupt dealer lie in a restricted domain. The AVSS protocols in Sections 5 and
Section 6 rely in a random beacon. In Section 7, we show how to modify both of these protocols
so that they do not rely on a random beacon, but instead rely on modeling a hash function as
a random oracle. The resulting protocols also have the advantage of requiring fewer rounds of
communication (and we speculate that they are resistant to adaptive corruptions, rather than just
static corruptions).

2 Polynomial interpolation, Reed-Solomon codes, and secret sharing

We recall some basic facts about polynomial interpolation, Reed-Solomon codes, and secret sharing.
As we want to work over both finite fields and Galois rings, we state these facts more generally, work-
ing over an arbitrary, finite, commutative ring with identity. For more details see [ACD+19], [Feh98]
or [QBC13].

If A is a commutative ring with identity, we let A∗ denote its group of units. Let A[x] denote
the ring of univariate polynomials over A in the variable x. For positive integer d, let A[x]<d denote
the A-subalgebra of A[x] consisting of all polynomials of degree less than d.

8

2.1 Polynomial interpolation

The key to making polynomial interpolation work over an arbitrary ring A is to restrict the choice
of points at which we evaluate polynomials over A. To this end, we work with the notion of
an exceptional sequence, which is a sequence (s1, . . . , sn) such that each si ∈ A, and for all
i, j ∈ [n] with i ̸= j, we have si − sj ∈ A∗.5 When ordering does not matter, we use the (somewhat
nonstandard but more natural) term exceptional set to denote a set E ⊆ A such that s− t ∈ A∗

for all s, t ∈ E with s ̸= t. Clearly, if E is an exceptional set, then so is any subset of E . The size of
the largest exceptional set in a ring A is called the Lenstra constant of the ring.

For example, if A is a field, then A is itself an exceptional set. As another example, suppose
A is a Galois ring Z[y]/(pk, F (y)), where F (y) is a monic polynomial of degree δ whose image in
Z/(p)[y] is irreducible. Then A contains an exceptional set of size pδ. Such a set E may be formed
by taking any set of polynomials in Z[y] whose images in Z[y]/(p, F (y)) are distinct, and setting E
to be the images of these polynomials in Z[y]/(pk, F (y)).

So now consider an exceptional sequence of evaluation coordinates e = (e1, . . . , en) ∈ An.
Because e is an exceptional sequence, polynomial interpolation with respect to these evaluation
coordinates works just as expected. That is, for every a = (a1, . . . , an) ∈ An, there exists a unique
polynomial f ∈ A[x]<n such that f(ej) = aj for all j ∈ [n]. Indeed, the coefficient vector of f
is given by a · V −1, where V ∈ An×n is the Vandermonde matrix determined by the vector of
evaluation coordinates e. Because e is an exception sequence, the determinant of V is a unit, and
hence V is invertible.

2.2 Reed-Solomon codes

Let A be a ring and e ∈ An be a exceptional sequence. For a positive integer d, we define the
(n, d)-Reed-Solomon code over A (with respect to e) to be the A-subalgebra of An consisting of
the vectors

{(f(e1), . . . , f(en)) : f ∈ A[x]<d}.
Elements of this subalgebra are called codewords. Let C ∈ An×(n−d) be the matrix consisting of the
rightmost n− t columns of V −1. Then for each a ∈ An, we see that a is a codeword if and only if
a · C = 0 (this just expresses the condition that the unique polynomial obtained by interpolation
has degree less than d). The matrix C is called as a check matrix for the code.

2.3 Asynchronous verifiable secret sharing

We now turn to secret sharing, specifically, asynchronous verifiable secret sharing (AVSS). We have
n parties P1, . . . , Pn, of which at most t < n/3 may be corrupt. We assume static corruptions
(although we claim, without a full proof, that one of our AVSS protocols is secure against adaptive
corruptions in the random oracle model). Let H denote the indices of the honest parties, and let C
denote the indices of the corrupt parties.

We assume the parties are connected by secure point-to-point channels, which provide both
privacy and authentication. As we are working exclusively in the asynchronous communication
model, there is no bound on the time required to deliver messages between honest parties.

Let A be a ring and e ∈ An be a exceptional sequence. An (n, d, L)-AVSS protocol over A (with
respect to e) should allow a dealer D ∈ {P1, . . . , Pn} to input polynomials f1, . . . , fL ∈ A[x]<d so

5 [n] denotes the set {1, . . . , n}, and [0..n] denotes the set {0, . . . , n}.

9

that these polynomials are disseminated among P1, . . . , Pn in such a way that each party Pj outputs
the corresponding the shares f1(ej), . . . , fL(ej). Such a protocol should satisfy the following security
properties (informally stated):

Correctness: If any honest parties produce an output, then there must exist polynomials
f1, . . . , fL ∈ A[x]<d such that each honest Pj outputs {fℓ(ej)}Lℓ=1, if it outputs anything
at all. Moreover, if the dealer D is honest, these must be the same polynomials input by
D.

Privacy: If D is honest, the protocol should reveal no more to the adversary than the
values {

fℓ(ej)
}
ℓ∈[L]
j∈C

,

that is, the shares of the corrupt parties.

Note that in the correctness condition, it is essential that the protocol constrain a corrupt dealer
D so ensure that the polynomials f1, . . . , fL have degree less than d.

These security properties can be better captured by working in the universal composability (UC)
framework [Can00] and defining an ideal functionality Favss, see Fig. 1.

Favss captures the correctness property by the fact that a corrupt dealer D is constrained in
the ideal world to input polynomials of the right degree. In a more detailed definition of Favss,
one might have the dealer D input a bit string to Favss, and then Favss would parse this bit string
(according to some standard convention) as a list of L polynomials over A of degree less than d.
If this failed for any reason, Favss would not accept this input from D. For the sake of clarity, we
omit such details, and throughout this paper assume that ideal functionalities and other protocol
machines make such “syntax checks” by default.

Favss in fact captures a stronger form of correctness, namely, input extractability. This property
intuitively means that a corrupt dealer D must explicitly commit to all of it polynomials before
any honest party outputs its own shares. This follows from the fact that in the UC framework,
the ideal-world adversary (or simulator) must somehow extract, from the protocol messages it sees,
the polynomials it needs to submit to Favss as an input on behalf of D before it can request that
outputs are sent to any honest parties. This property is essential in some applications (including a
protocol we present later in Section 6).

Favss captures the privacy property by the fact that when the dealer D is honest, the only
information obtained by an adversary in the ideal world are the outputs sent from Favss to the
corrupt parties, and these outputs consist of just the shares of these parties, as required.

2.3.1 Completeness. A protocol that securely realizes the ideal functionality Favss does not
necessarily satisfy the completeness property mentioned in Section 1. Indeed, as stated, the ideal-
world adversary may choose to have Favss deliver outputs to some honest parties but not others.

Intuitively speaking, the completeness property for an AVSS protocol says that if an honest
dealer D inputs a value or if any honest party output a value, then eventually, all honest parties
output a value. Here, “eventually” means if and when all messages sent between honest parties
have been delivered. Thus, completeness is not an unconditional guarantee: in the asynchronous
communication setting, we formally leave the scheduling of message delivery entirely to the adver-
sary, who may decide to deliver messages sent between honest parties in an arbitrary order, or may
choose not to deliver some of them at all.

10

Favss

Input(f1, . . . , fL): this operation is invoked once by the dealer D, who inputs polynomials f1, . . . , fL ∈ A[x]<d

to Favss. In response, Favss sends the message NotifyInput() to the ideal-world adversary.
RequestOutput(j): after the input has been received, this operation may be invoked by the ideal-world

adversary, who specifies j ∈ [n]. In response, Favss sends to Pj the message

Output
({

fℓ(ej)
}
ℓ∈[L]

)
.

Fig. 1. The AVSS Ideal Functionality (parameterized by n, d, L, A, e, and D)

Turning the above intuitive definition of completeness into a formal one is fairly straightforward.
One simply defines an attack game in which the adversary (who controls the corrupt parties and
the scheduling of message delivery) wins the game if he can drive the protocol to a state which
violates the stated completeness condition, that is, a state such that:

(i) an honest dealer D has input a value or some honest party has output a value,
(ii) all messages sent between honest parties have been delivered, and
(iii) some honest party has not output a value.

Completeness means that any efficient adversary wins this game with negligible probability.
This simple notion of completeness will be sufficient for our purposes. Note that one technical

limitation of this definition is that it is only meaningful if the message complexity (that is, the
total number of messages sent by any honest party to any other party) is uniformly bounded
(that is, bounded by a polynomial that is independent of the adversary, at least with overwhelming
probability). Indeed, the completeness property is vacuously satisfied by any protocol in which there
are always more messages that need to be delivered (so condition (ii) in the previous paragraph
can never be attained). Fortunately, all of the protocols we shall consider here have a uniformly
bounded message complexity.

Our approach to modeling completeness closely adheres to the approach introduced in
[CKPS01]. We note that the related work [CP23] studies AVSS and AMPC protocols in the UC
framework, but makes use of a formal notion of time introduced in [KMTZ13] to model com-
pleteness. Our view is that this extra (and somewhat complicated) machinery is unnecessary and,
moreover (echoing the view of [HS15]), that notions such as liveness and related notions such as
completeness are more simply and quite adequately modeled as properties of concrete protocols (as
we have done so here) rather than as security properties captured by ideal functionalities.

2.4 Higher-level secret sharing interfaces

Our ideal functionality Favss essentially matches that in [CP23], and models a rather minimalistic,
low-level interface. As given, the dealer inputs polynomials over A and parties receives shares.
However, there are no interfaces for encoding a secret value as a polynomial, or for performing
various operations on shares, such as opening shares, combining shares to reconstruct a secret, or
performing linear operations on sharings.

Our choice of this minimalistic interface is intentional, as it is simple and sufficient for our
immediate needs. However, higher-level interfaces can easily be implemented on top of it using
standard techniques. For example, the standard way to encode a secret s ∈ A as a polynomial is

11

to make s the constant term of the polynomial and choose the other coefficients at random. Doing
this, the secret is essentially encoded as the value of the polynomial at the evaluation coordinate
0. For this to work, we require that (0, e1, . . . , en) is an exceptional sequence. If this requirement is
satisfied, and if d > t, then we know that the shares leaked to the adversary reveal no information
about the secret s. Moreover, if n ≥ d+2t, we know we can reconstruct the polynomial, and hence
the secret, using a protocol based on “online error correction” (originating in [BCG93], but see
[CP17] for a nice exposition of this and many other related protocols in the asynchronous setting).
However, this is not the only mechanism that may be used to encode a secret. For example, one
may in fact encode the secret as the leading coefficient, rather than the constant term — while
this alleviates the requirement of extending the vector of evaluation coordinates to n+1 elements,
it may not be convenient in some applications. As another example, with “packed” secret sharing,
several secrets may be encoded in a polynomial, by encoding these secrets at different evaluation
coordinates [FY92] — while this can improve the performance of some higher-level protocols, it
also reduces the resiliency of such protocols.

Also observe that our minimalistic interface also requires that the ring A already has appropriate
evaluation coordinates. In some applications, the secret may lie in some ring S that does not contain
a large enough exceptional sequence. For example, S may be a finite field Fq where q is very small,
or a ring such as Z/(pk), where p is very small. In this case, the standard technique is to secret
share over a larger ring A ⊇ S — for example, a field extension in the case S = Fq or a Galois ring
extension in the case S = Z/(pk). Note that a direct application of this technique allows a corrupt
dealer to share a secret that lies in A \ S. In some applications, this may be acceptable, while in
others, it may not. In Section 6, we show how our basic AVSS protocol for secret sharing over A
can be extended to enforce the requirement that secrets do in fact lie in the subring S.

2.5 The number of roots of a polynomial

The following result is standard. Since it is typically proved with respect to fields, for completeness,
we give a proof here with respect to rings.

Lemma 2.1 (Schwartz-Zippel over rings). Let A denote a commutative ring with identity and
let P ∈ A[x1, x2, . . . , xn] be a non-zero polynomial of total degree d ≥ 0. Let E ⊆ A be an exceptional
set, and let r1, . . . , rn be selected uniformly, and independently, from E. Then

Pr[P (r1, . . . , rn) = 0] ≤ d

|E| .

Proof. We first consider the case of univariate polynomials. Let f ∈ A[x] be of degree d. We show
that it can only have at most d roots in E . This is done by induction, with the base case of d = 0
being trivial. Now suppose f(x) is of degree d+ 1, and the result is true for polynomials of degree
d. We work by contradiction and assume that f(x) has d + 2 distinct roots in E , which we label
r1, . . . , rd+2. We can write f(x) = (x− rd+2) · g(x) for some polynomial g(x) of degree d. Since the
roots come from an exceptional set we know that ri − rd+2 is invertible for every i = 1, . . . , d+ 1.
Hence r1, . . . , rd+1 must be roots of g(x), and so g(x) has d+1 distinct roots. This contradicts the
inductive hypothesis.

We now prove the main result for multivariate polynomials by induction on n, where the base
case of n = 1 is the univariate case we just considered. So we assume the statement holds for n ≥ 1,

12

and consider the case of multivariate polynomial with n+1 variables f(x1, . . . , xn+1). We can write

f(x1, . . . , xn) =
∑

i≤d

xin+1 · fi(x1, . . . , xn)

where fi is a multivariate polynomial in n variables. Since f(x1, . . . , xn+1) is not identically zero
there is at least one fi(x1, . . . , xn) which is not identically zero. Let d′ denote the largest such index
i. We have deg(fd′) ≤ d− d′ since f has degree at most d.

We know, by the inductive hypothesis, that

Pr[fd′(r1, . . . , rn) = 0] ≤ d− d′

|E| ,

for randomly chosen r1, . . . , rn ∈ E .
Now if fd′(r1, . . . , rn) ̸= 0 then f(r1, . . . , rn, xn+1) is a non-zero univariate polynomial of degree

d′. So by the base case we have, for randomly chosen rn+1 ∈ E ,

Pr[f(r1, . . . , rn, rn+1) = 0 | fd′(r1, . . . , rn) ̸= 0] ≤ d′

|E| .

By Bayes’ Theorem, and some manipulation, we therefore have

Pr[f(r1, . . . , rn, rn+1) = 0] ≤ d− d′

|E| +
d′

|E| =
d

|E| .

⊓⊔

3 Subprotocols

In this section, we review the subprotocols that our new AVSS protocol will need. Here and through-
out the rest of this paper, we assume a network of n parties P1, . . . , Pn, of which at most t < n/3 of
them may be statically corrupted, and which are connected by secure point-to-point channels (pro-
viding both privacy and authentication). We also assume network communication is asynchronous.

3.1 Random Beacon

A random bacon is a protocol in which each party initiates the protocol and outputs a common
value ω that is effectively chosen at random from an output space Ω. Such a protocol should
satisfy the following security properties (informally stated):

Correctness: All honest parties that output a value output the same value ω.
Privacy: The adversary learns nothing about ω until at least one honest party initiates the

protocol.

These security properties are best defined in terms of the ideal functionality FBeacon, which is given
in Fig. 2. Note that in FBeacon, a party Pj initiates the protocol by explicitly supplying the input
init.

We also want such a protocol to satisfy the following completeness property: if all honest parties
initiate the protocol, then eventually, all honest parties output a value. Just as in Section 2.3.1,
“eventually” means if and when all messages sent between honest parties have been delivered.

13

FBeacon

Input(init): This operation may be invoked once by each party Pj . If this is the first time this is invoked
by any honest party, FBeacon chooses ω ∈ Ω at random and sends NotifyInput(j, ω) to the ideal-world
adversary; otherwise, FBeacon sends NotifyInput(j) to the ideal-world adversary.

RequestOutput(j): after the value ω has been generated in response to an Input operation, this operation
may be invoked by the ideal-world adversary, who specifies j ∈ [n]. In response, FBeacon sends to Pj the
message Output(ω).

Fig. 2. The Random Beacon Functionality FBeacon (parameterized by output space Ω)

While our main AVSS protocol relies on a random beacon, we will also give a simpler AVSS
protocol (in Section 7) that does not need a random beacon at all, but instead is analyzed in the
random oracle model. But even in our main AVSS protocol, we only need to run one instance
of a random beacon protocol to distribute shares of a large batch of polynomials. As such, a
random beacon can, in principle, be securely realized with any (not very efficient) protocol without
impacting the overall amortized cost of the AVSS protocol (at least for a sufficiently large batch
size).

3.1.1 Implementing a random beacon. One could implement a random beacon using a
(t + 1)-out-of-n threshold BLS signature scheme [BLS01,Bol03,SJK+17]. Despite being based on
“heavyweight” cryptography, this beacon may be efficient enough for use in our AVSS protocol
as well as other applications. However, this beacon requires a hardness assumption that is not
post-quantum secure, as well additional set-up assumptions (including some kind of distributed
key distribution step).

Very recently, [BBB+23] showed how to implement a random beacon using just “lightweight”
cryptography and no set-up assumptions (other than secure channels). Although the communication
complexity of their HashRand protocol is super-linear, it is likely good enough for use in our AVSS
protocol as well as other applications.

Consider a long-running system in which we will need an unlimited supply of random beacons.
Suppose we prepare a sufficiently large initial batch I of beacons, using a protocol such as HashRand.
Then we can in fact prepare an unlimited supply of beacons, with a linear amortized communication
cost per beacon, as follows. We use the standard technique of having each party generate a batch
of sharings of a random secret, agreeing on a set of such batches using a consensus protocol, and
then adding up the batches in the set to obtain a batch of sharings of random secrets that are
unknown to any party. In fact, we can obtain a linear number of such batches in one go by using
well-known “batch randomness extraction” techniques (see [HN06]). The result of this step is one
very large batch J of sharings of secrets that are unknown to any party. Each sharing in the batch
J can now be used as a random beacon, by just opening the sharing when it is time to reveal the
beacon. The construction of J requires an AVSS protocol and a consensus protocol. We could use
our new AVSS protocol, which may or may not require a beacon (depending on the version used),
and an efficient consensus protocol such as FIN [DWZ23], which definitely requires a beacon. With
these protocols, so long as I is sufficiently large to run them, we can make J arbitrarily large in
relation to I. So we can arrange that |J | ≫ |I|, and then partition J into two batches I ′ and
J ′, where |I ′| = |I|. Then we can use the batch J ′ for applications and the batch I ′ to repeat the

14

process again. The amortized communication complexity per sharing of our AVSS protocol is linear.
Although we have to run it a linear number of times per beacon, by using the batch randomness
extraction technique, the amortized communication complexity per beacon is still linear. Thus,
except for an initial “bootstrapping phase”, we can prepare an unlimited supply of beacons with a
linear amortized communication cost per beacon.

Note that while the technique in the previous paragraph allows to prepare batches of random
beacons with a linear amortized communication cost per beacon, the communication cost to reveal
one beacon is quadratic. There are batching techniques that allow one to reveal many such beacons
at once at lower cost (see, for example, Section III of [CP17]), but it is not clear if this type of
batching has many useful applications.

3.1.2 Extending the output space of a random beacon. Suppose we have a protocolΠ that
securely realizes a random beacon with output space Ω. We can use Π to securely realize a random
beacon with a larger output space. One way to do this is to run N instances of Π concurrently
and concatenate the outputs. This immediately yields a protocol that securely realizes a random
beacon with output space ΩN .

Of course, the approach in the previous paragraph comes at a significant cost. A more practical
approach is to use a cryptographic psuedorandom generator G : Ω → Ω′. If Ω is sufficiently large
(so that 1/|Ω| is negligible), and if we model G as a random oracle, then the protocol Π ′ that runs
Π to obtain the output ω ∈ Ω and then outputs ω′ := G(ω) ∈ Ω′ securely realizes a random beacon
with output space Ω′. Indeed, in the random oracle model, a simulator that is given an output
ω′ ∈ Ω′ of the ideal functionality for the Ω′-beacon can generate ω ∈ Ω at random and program
the random oracle representing G so that G(ω) = ω′.

The above security proof relied heavily on the ability to program the random oracle representing
G. If instead of modeling G as a random oracle, we just assume that G is a secure pseudorandom
generator, then the above security proof falls apart, and in fact, protocol Π ′ will not securely realize
a random beacon. However, the output of Π ′ will still have properties (such as unpredictability)
that may be useful in certain applications. The typical setting where this works is one where the
security analysis requires a certain failure event E to occur with negligible probability for randomly
chosen ω′ ∈ Ω′, and the occurrence of E can be detected efficiently as a function of ω′ and data
that is available to the adversary prior to invoking protocol Π.

3.2 Reliable broadcast

A reliable broadcast protocol allows a sender S to broadcast a single message m to P1, . . . , Pn.
Such a protocol should satisfy the following security property (informally stated):

Correctness: All honest parties that output a message must output the same message.
Moreover, if the sender S is honest, that message is the one input by S.

This security property is best defined in terms of the ideal functionality FReliableBroadcast, which is
given in Fig. 3.

We also want such a protocol to satisfy the following completeness property: if an honest sender
S inputs a message or if any honest party outputs a message, then eventually, all honest parties
output a message. As usual, “eventually” means if and when all messages sent between honest
parties have been delivered.

15

FReliableBroadcast

Input(m): this operation is invoked once by the sender S, who inputs a message m. In response,
FReliableBroadcast sends the message NotifyInput(m) to the ideal-world adversary.

RequestOutput(j): after the input has been received, this operation may be invoked by the ideal-world
adversary, who specifies j ∈ [n]. In response, FReliableBroadcast sends to Pj the message Output(m).

Fig. 3. The Reliable Broadcast Ideal Functionality (parameterized by S)

ΠBrachaBroadcast

// Sender S with input m
send (send,m) to P1, . . . , Pn

// Receiving party Pj

acquired← false, voted← false, done← false

while not done do
wait until either:

not acquired and for some m: received (send,m) from S ⇒
acquired← true
send (echo,m) to P1, . . . , Pn

not voted and for some m: received (echo,m) from n− t distinct parties ⇒
send (vote,m) to P1, . . . , Pn

voted← true

not voted and for some m: received (vote,m) from t+ 1 distinct parties ⇒
send (vote,m) to P1, . . . , Pn

voted← true

voted and for some m: received (vote,m) from n− t distinct parties ⇒
// output stage
output m
done← true

Fig. 4. Bracha’s Protocol for Reliable Broadcast

16

3.2.1 Bracha broadcast. A simple reliable broadcast protocol is called Bracha Broad-
cast [Bra87], and is given in Fig. 4. We express the logic for the sender as a separate process,
even though the sending party is also one of the receiving parties. First note, that the communica-
tion complexity of Bracha broadcast is clearly O(n2 · |m|).

Since we will be using variants of Bracha broadcast later, we highlight some important properties
of the echo/vote logic of this protocol. Suppose that there are t′ ≤ t corrupt parties.

Bracha Property B0: If an honest party receives n−t votes for the same message, then all honest
parties will eventually vote for some message.

Suppose an honest party receives n − t votes for the same message. Then at least n − 2t ≥ t + 1
honest parties must have voted for this message. Upon receipt of these t+1 votes, each honest party
will vote if they have not done so already.

Bracha Property B1: If an honest sender S inputs a message, then all honest parties will even-
tually vote for some message.

Eventually, all honest parties will echo the sender’s message, unless some honest party enters the
output stage without doing so. In the former case, upon receipt of these echoes, each honest party
will vote if they have not already done so. In the latter case, some honest party must have received
n− t votes on the same message, and the property follows from Bracha Property B0.

Bracha Property B2: If an honest party votes for a message, then at least n − t − t′ honest
parties must have echoed the same message.

This is because the very first time any honest party votes for a given message it must be be the
case that this party received n− t echoes on that message from distinct parties, of which n− t− t′

must be honest.

Bracha Property B3: If two honest parties vote for a message, they must vote for the same
message.

This is because if two honest parties vote different messages, then by Bracha Property B2 we have
one set of n− t− t′ honest parties echoing one message, and a second, disjoint set of n− t− t′ honest
parties echoing a different message, which means 2(n−t−t′) ≤ n−t′, which implies n ≤ 2t+t′ ≤ 3t.

The correctness property of Bracha broadcast easily follows from Bracha Properties B2 and B3
(B3 implies all honest parties must output the same message, and B2 implies that if the sender
is honest, this message must be the one input by the sender). The completeness properties easily
follows from Bracha Properties B0, B1, and B3. Since, B0 and B1 imply that if an honest sender
inputs a message or an honest party outputs a message, then all honest parties eventually vote for a
message, and B3 says they all vote for the same message, which implies all honest parties eventually
output a message.

3.2.2 Compact broadcast. The communication complexity of Bracha broadcast can be im-
proved by the use of erasure codes. To this end, we need an (n, n − 2t) erasure code, which
has the following properties: a message m can be efficiently encoded as a vector of n fragments
(f1, . . . , fn) in such a way that m can be efficiently reconstructed (decoded) from any subset of

17

n − 2t fragments. An (n, n − 2t)-Reed-Solomon code can be used for this purpose, but other con-
structions are possible as well. In any reasonable construction, the size of each fragment will be
about |m|/(n− 2t).

We can use such an erasure code to build a reliable broadcast protocol with better commu-
nication complexity as follows. Given a long message m, the sender S encodes the message using
an (n, n− 2t) erasure code, to obtain a vector of n fragments (f1, . . . , fn). Each fragment has size
roughly |m|/(n − 2t) — so assuming n > 3t, the size of each fragment is at most roughly 3|m|/n.
The sender S then sends each fragment fj to party Pj , who then echoes that fragment to all other
parties. Each party can then collect enough fragments to reconstruct m. To deal with dishonest
parties, some extra steps must be taken.

This approach was initially considered in [CT05], who give a protocol with communication
complexity O(n · |m| + λ · n2 · log n). Here, λ is the output length of a collision-resistant hash
function. The factor logn arises from the use of Merkle trees. If |m| ≫ λ ·n · log n, this is essentially
optimal — indeed, any reliable broadcast protocol must have communication complexity Ω(n · |m|),
since every party must receive m.

Recall that that a Merkle tree allows one party, say Charlie, to commit to a vector of values
(v1, . . . , vk) using a collision resistant hash function by building a binary tree whose leaves are
the hashes of v1, . . . , vk, and where each internal node of the tree is the hash of its (at most two)
children. The root r of the tree is the commitment. Charlie may “open” the commitment at an
index i ∈ [k] by revealing vi along with a “validation path” πi, which consists of the siblings of
all nodes along the path in the tree from the hash of vi to the root r. We call πi a validation
path for vi under r at i. Such a validation path is checked by recomputing the nodes along
the corresponding path in the tree, and testing that the recomputed root is equal to the given
commitment r. The collision resistance of the hash function ensures that Charlie cannot open the
commitment to two different values at a given index.

We give here the details of a reliable broadcast protocol that is based on erasure codes and
Merkle trees, and which achieves the same communication complexity as that in [CT05]. This
protocol is similar to that presented in [CT05], but is a bit simpler and also bears some resemblence
to a related protocol in the DispersedLedger system [YPA+21]. Our reasons for presenting this
protocol are threefold: first, to make this paper more self contained; second, because this protocol
has somewhat better communication complexity than the one in [CT05]; and third, because later
in this paper, we will modify this protocol to achieve other goals. We call this reliable broadcast
protocol ΠCompactBroadcast and it is given in Fig. 5.

The reader may observe that ΠCompactBroadcast has essentially the same structure as Bracha’s
reliable broadcast protocol, where the message being broadcast is the root of a Merkle tree. The
correctness property of ΠCompactBroadcast follows from Bracha Properties B2 and B3, and the colli-
sion resistance of the hash function used for building the Merkle trees. The completeness property
of ΠCompactBroadcast follows from Bracha Properties B0, B1, B2 and B3. Specifically, Bracha Prop-
erty B2 in this context ensures that in ΠCompactBroadcast, if any honest party votes for a root r,
then at least n− 2t honest parties must have echoed r along with a corresponding validation path
and fragment, so that all honest parties will eventually be able to reconstruct a message from these
n− 2t fragments in the output stage.

3.2.3 Other reliable broadcast protocols. For somewhat shorter messages, a protocol such
as that in [DXR21] may be used, which achieves a communication complexity of O(n · |m|+λ ·n2).

18

ΠCompactBroadcast

// Sender S with input m
encode m as (f1, . . . , fn) using an (n, n− 2t) erasure code
build the Merkle tree for (f1, . . . , fn) with root r
for j ∈ [n] : send (send, r, πj , fj) to Pj , where πj is the validation path for fj under r at j

// Receiving party Pj

acquired← false, voted← false, done← true

while not done do
wait until either:

not acquired and for some (r, πj , fj): received (send, r, πj , fj) from S ⇒
acquired← true
if πj is a correct validation path for fj under r at j then

send (echo, r, πj , fi) to P1, . . . , Pn

not voted and for some r: received (echo, r, ·, ·) from n− t distinct parties ⇒
// output stage
send (vote, r) to P1, . . . , Pn

voted← true

not voted and for some r: received (vote, r) from t+ 1 distinct parties ⇒
send (vote, r) to P1, . . . , Pn

voted← true

voted and for some r: received (vote, r) from n− t distinct parties ⇒
// output stage
wait until: for some I ⊆ [n], {πi, fi}i∈I :

|I| = n− 2t and for all i ∈ I:
received (echo, r, πi, fi) from Pi and
πi is a correct validation path for fi under r at i

reconstruct the message m′ from the fragments {fi}i∈I
compute the fragments (f ′

1, . . . , f
′
n) of message m′

build the Merkle tree for (f ′
1, . . . , f

′
n) with root r′

if r = r′

then output m′

else output ⊥
done← true

Fig. 5. A Reliable Broadcast Protocol Based on Erasure Codes and Merkle Trees

19

The protocol ΠCompactBroadcast above uses only an erasure code, while the protocol in [DXR21]
requires an “online” error correcting code, which may be more computationally expensive than
erasure codes. Another potential advantage of ΠCompactBroadcast over the protocol in [DXR21] is
that the former has a very balanced communication pattern, which can be important to prevent
a communication bandwidth bottlenecks. The paper [DXR22] improves on [DXR21], obtaining the
same communication complexity, but with a balanced communication pattern.

3.2.4 Relation to AVID. The design of ΠCompactBroadcast is based on the notion of Asyn-
chronous Verifiable Information Dispersal, or AVID. In an AVID protocol, a sender S wants to
send a message m to some or possibly all of the parties P1, . . . , Pn. There are two phases to such a
protocol: the dispersal phase, where S disperses m (or fragments of m) among P1, . . . , Pn, and
the retrieval phase, where individual Pj ’s may retrieve m. The correctness property for such a
protocol is essentially the same as that of a reliable broadcast protocol:

All honest parties that output a message in the retrieval phase output the same message.
Moreover, if S is honest, that message is m.

The completeness property has two parts. First, in the dispersal phase:

If an honest sender S inputs a message or if one honest party completes the dispersal phase,
then every honest party eventually completes the dispersal phase.

Second, in the retrieval phase:

If the dispersal phase has completed (for some honest parties), and the retrieval phase for
an honest party Pj is initiated, then Pj eventually outputs a message.

Note that one can use any AVID protocol to implement reliable broadcast, by first dispersing
the message and then having every party retrieve the message.

The point of using an AVID protocol is that in situations where only a small number of par-
ties need to retrieve the message, communication complexity can be much lower than in a reliable
broadcast protocol. For example, the dispersal phase of the AVID protocol in the DispersedLedger
system [YPA+21] is very similar to our protocol ΠCompactBroadcast, except that the echo messages in
the former do not include the validation paths and fragments — rather, this data is only dissemi-
nated to those parties that actually need to retrieve the message. The resulting AVID protocol thus
has a communication complexity of O(|m|+ λ · n2) in the dispersal phase and O(|m|+ λ · n · log n)
per retrieval.

3.2.5 One-sided voting. A degenerate version of Bracha broadcast can be used as a simple
one-sided voting protocol, see Fig. 6. In this protocol, each party may initiate the protocol and may
output the value done. The key security property of this protocol (informally stated) is as follows:

Correctness: If any honest party outputs done, then at least n − t − t′ honest parties
initiated the protocol, where t′ ≤ t is the number of corrupt parties.

This security property is best defined in terms of the ideal functionality FOneSidedVote, which is
given in Fig. 7. Note that in FOneSidedVote, a party Pj initiates the protocol by explicitly supplying
the input init.

20

ΠOneSidedVote

// Party Pj

acquired← false, voted← false, done← false

while not done do
wait until either:

not acquired and received input init ⇒
acquired← true
send (echo) to P1, . . . , Pn

not voted and received (echo) from n− t distinct parties ⇒
send (vote) to P1, . . . , Pn

voted← true

not voted and received (vote) from t+ 1 distinct parties ⇒
send (vote) to P1, . . . , Pn

voted← true

voted and received (vote) from n− t distinct parties ⇒
// output stage
output done
done← true

Fig. 6. Degenerate Version of Bracha’s Protocol for One-Sided Voting

FOneSidedVote

Input(init): This operation may be invoked once by each party Pj . In response, FOneSidedVote sends
NotifyInput(j) to the ideal-world adversary.

RequestOutput(j): after n − t − t′ honest parties have received input init (where t′ ≤ t is the number of
corrupt parties), this operation may be invoked by the ideal-world adversary, who specifies j ∈ [n]. In
response, FOneSidedVote sends to Pj the message Output(done).

Fig. 7. The One-Sided Voting Ideal Functionality FOneSidedVote

This protocol also satisfies the following completeness property: if all honest parties initiate
the protocol or some honest party party outputs done, then eventually, all honest parties output
done. As usual, “eventually” means if and when all messages sent between honest parties have been
delivered.

The correctness property follows from the analog of Bracha Property B2. The completeness
property follows from the analogs of Bracha Properties B0 and B1.

3.3 Secure Message Distribution

We require a new type of protocol, which we call a secure message distribution protocol. Such
a protocol enables a sender S to securely distribute a vector m = (m1, . . . ,mn) of messages, so
that during an initial distribution phase, each party Pj outputs mj . After receiving its own message
mj , party Pj may optionally forward this message to another party. Moreover, after receiving any
message mu (either its own or one forwarded to it), party Pj may optionally forward mu to another

21

party. This forwarding functionality will be needed to deal with the “unhappy” path of our AVSS
protocol.

Such a protocol should satisfy the following security properties (informally stated):

Correctness: If any honest parties produce an output in the distribution or forwarding
phases, those messages must be consistent with a message vector m = (m1, . . . ,mn) —
that is, the message output by honest Pj during the distribution phase must be mj , and
any message output by some honest party during the forwarding phase as ostensibly
belonging to to some party Pu must be mu. Moreover, if the sender S is honest, m must
be the same message vector input by S.

Privacy: If the sender S and party Pu are honest, and no honest party forwards mu to a
corrupt party, then the adversary learns nothing about mu.

Note that whenever a party outputs a message (in either the distribution or forwarding phase),
that message may be ⊥, which can only happen if the sender is corrupt.

It will also be convenient for us to allow a party to include an identifying tag along with the
forwarded message.

We may more precisely formulate the security properties for secure message distribution as the
ideal functionality FSecMsgDst, which is given in Fig. 8. We note that FSecMsgDst also captures an
input extractability property that intuitively means that a corrupt sender S must explicitly commit
to a vector of all input messages before any honest party outputs its own message in the distribution
phase (or any forwarded message for that matter). This is a property that will be essential in the
security analysis of our AVSS protocol.

We bring to the reader’s attention the logic in the ideal functionality FSecMsgDst for processing a
request by a party Pj to forward a message mu to another party. The logic enforces a precondition
that requires that either (i) the message to be forwarded is one that Pj has already received (either
its own or one forwarded to it), or (ii) Pj and S are both corrupt. In any implementation, an honest
party will always simply ignore an input that requests it to forward a message it does not have.
If we did not have such a precondition, an ideal-world adversary could trivially circumvent the
privacy property by having a corrupt Pj simply ask the ideal functionality to forward a message
mu belonging to an honest party Pu to itself or to some other corrupt party.

In fact, FSecMsgDst is a bit stronger than we need, in the sense that we may assume that when
the sender S is honest, no honest Pj will forward its message mj to any other party. As we will see,
this constraint will be satisfied by our AVSS protocol. In the UC framework, this can be captured
by only considering restricted environments that satisfy this constraint. We will give an efficient
protocol that securely realizes FSecMsgDst with respect to such constrained environments. As we
will also see, in the random oracle model, essentially the same protocol is secure even without this
constraint.

We also want a secure message distribution protocol to satisfy the following completeness prop-
erty, which has two parts. First, in the distribution phase:

If an honest sender S inputs a vector of messages, or if one honest party outputs a mes-
sage in the distribution phase, then eventually, all honest parties output a message in the
distribution phase.

Second, in the forwarding phase:

If an honest party Pj forwards a message mu to an honest party Pi, then eventually, Pi

receives mu.

22

FSecMsgDst

Input(distribute,m): this operation is invoked once by the sender S, who inputs a message vector m =
(m1, . . . ,mn). In response, FSecMsgDst sends the message NotifyInput(distribute) to the ideal-world adver-
sary.

RequestOutput(distribute, j): after the input m = (m1, . . . ,mn) has been received, this operation may be
invoked by the ideal-world adversary, who specifies j ∈ [n]. In response, FSecMsgDst sends to Pj the
message Output(distribute,mj).

Input(forward, u, i, tag): party Pj may invoke this operation once per (u, i) ∈ [n] × [n], indicating that the
message mu should be forwarded to party Pi with tag tag, subject to the precondition that either:
(i) the message to be forwarded is one that Pj has already received (either its own or one forwarded to

it), or
(ii) Pj and S are both corrupt.
In response, FSecMsgDst sends the message NotifyInput(forward, u, j, i, tag) to the ideal-world adversary.

RequestOutput(forward, u, j, i, tag): after Pj has invoked Input(forward, u, i, tag), and after Pi has received
its own message mi from S in the distribution phase, this operation may be invoked by the ideal-word
adversary. In response, FSecMsgDst sends the message Output(forward, u, j, tag,mu) to Pi.

Fig. 8. The Ideal Functionality for Secure Message Delivery FSecMsgDst (parameterized by S)

As usual, “eventually” means if and when all messages sent between honest parties have been
delivered.

In Section 4 we give a secure message distribution protocol that is built from “lightweight”
cryptographic primitives, specifically, semantically secure symmetric key encryption and a hash
function. The hash function needs to be collision resistant and to also satisfy a kind of related-key
indistinguishability assumption (see Section 4.2 for more details). The communication complexity
of the distribution phase of our protocol is O(|m| + λ · n2 · log n). If an honest party forwards a
message mu to another party, this adds O(|mu|+ λ · n · log n) to the communication complexity.

In our application to AVSS, we will only use the forwarding mechanism on the “unhappy path”,
in which a corrupt sender provably misbehaves. In particular, unless we are on the “unhappy path”,
the forwarding mechanism will not contribute to the communication complexity at all.

4 Building Secure Message Distribution

In this section we show how to implement the secure message distribution functionality from Sec-
tion 3.3. Note that [YLF+22] and [GS22] show how to implement this type of functionality using
“heavyweight” cryptographic primitives based on discrete logarithms. In particular, [GS22] rigor-
ously defines a particular multi-encryption primitive with an appropriate notion of chosen ciphertext
security and a verifiable decryption protocol, and presents practical constructions that are provably
secure in the random oracle model.

While such constructions may well yield acceptable performance in practice, we show here
that one can implement this functionality using only “lightweight” cryptographic primitives. The
resulting protocols are certainly more efficient than those based on discrete logarithms, and also
have the advantage of providing post-quantum security.

23

4.1 Reliable Message Distribution

We start out by considering the simpler notion of a reliable message distribution protocol,
which satisfies all the properties of a secure message secure message distribution protocol except
privacy.

We implement this using a variant of the reliable broadcast protocol ΠCompactBroadcast in Sec-
tion 3.2. In the distribution phase, the sender S starts with a vector of messages m = (m1, . . . ,mn);
it encodes each mi as a vector of fragments (fi1, . . . , fin) and then builds a Merkle tree for
(fi1, . . . , fin) with root ri; it then sends each Pj the collection of values {(ri, πij , fij)}ni=1, where
each πij is the validation path for fij under ri at j. Thus, each Pj receives the jth fragment of all
n messages. An echo message from Pj to Pi now includes r, πi, ri, πij , fij , where r is the root of
the Merkle tree built from (r1, . . . , rn) and πi is the validation path for ri under r at i. The vote
messages include just the root r. Once party Pj collects sufficiently many vote messages for a root r,
it enters the output stage, and waits to collects sufficiently many echo messages that contain valid
fragments of the jth message from which it can reconstruct that message. Details of the complete
distribution phase are in Fig. 9.

When Pj completes the distribution phase of the protocol, it can optionally forward mj to
another party Q by sending to Q the values it obtained in the last step of the distribution phase,
specifically, the values πj , rj along with the collection of n− 2t values {πji, fji}i. Party Q, who we
assume has also completed the distribution phase, can validate this information and compute the
message using the same logic used by Pj . This validation consists of two parts:

– In the first part, Q checks that the validation paths are correct with respect to the root r
acquired when entering the output stage; if this check fails, the forwarding subprotocol fails and
no output is delivered.

– In the second part, Q reconstructs the fragments and their Merkle tree, and compares the Merkle
tree roots. If this check fails, the forwarding subprotocol outputs ⊥; otherwise, it outputs the
message.

The first part detects if the party forwarding the message is misbehaving, while the second detects
if the sender S was misbehaving.

The same logic above can obviously be adapted to allow a party to forward any message that
it has received, either its own or one that was forwarded to it.

4.1.1 Correctness and completeness. The correctness and completeness properties for proto-
col ΠRelMsgDst follow from essentially the same argument used in Section 3.2.2 for the corresponding
properties for protocol ΠCompactBroadcast. Protocol ΠRelMsgDst also satisfies the input extractability
property, which follows from the same argument used in Section 3.2.2 for the completeness property
for protocol ΠCompactBroadcast. Specifically, Bracha Property B2 ensures that when one honest party
reaches the output stage in ΠRelMsgDst, at least n− 2t honest parties have echoed validation paths
and fragments for all input messages m1, . . . ,mn. Therefore, assuming collision resistance for the
hash function used for building Merkle trees, all these messages are fully determined at this time.

4.1.2 Communication complexity. The communication complexity of the distribution phase
is O(|m| + λ · n2 · log n). If an honest party forwards a message mu to another party, this adds
O(|mu|+ λ · n · log n) to the communication complexity.

24

ΠRelMsgDst

// Sender S with input m = (m1, . . . ,mn)
for i ∈ [n]: encode mi as (fi1, . . . , fin) using an (n, n− 2t) erasure code

and build the Merkle tree for (fi1, . . . , fin) with root ri
for j ∈ [n] : send (send, {(ri, πij , fij)}ni=1) to Pj , where

πij is the validation path for fij under ri at j for all i ∈ [n]

// Receiving party Pj

acquired← false, voted← false, done← false

while not done do
wait until either:

not acquired and for some {(ri, πij , fij)}ni=1: received (send, {(ri, πij , fij)}ni=1) from S ⇒
acquired← true
if πij is a correct validation path for fij under ri at j for all i ∈ [n] then

build the Merkle tree for (r1, . . . , rn) with root r
for i ∈ [n]: send (echo, r, πi, ri, πij , fij) to Pi,

where πi is the validation path for ri under r

not voted and for some r: received (echo, r, ·, ·, ·, ·) from n− t distinct parties ⇒
send (vote, r) to P1, . . . , Pn

voted← true

not voted and for some r: received (vote, r) from t+ 1 distinct parties ⇒
send (vote, r) to P1, . . . , Pn

voted← true

voted and for some r: received (vote, r) from n− t distinct parties ⇒
// output stage
wait until: for some πj , rj , I ⊆ [n], {πji, fji}i∈I :

πj is a correct validation path for rj under r at j, |I| = n− 2t, and for all i ∈ I:
received (echo, r, πj , rj , πji, fji) from Pi and
πji is a correct validation path for fji under rj at i

reconstruct the message m′
j from the fragments {fji}i∈I

compute the fragments (f ′
j1, . . . , f

′
jn) of message m′

j

build the Merkle tree for (f ′
j1, . . . , f

′
jn) with root r′j

if rj = r′j
then output m′

j

else output ⊥
done← true

Fig. 9. The Distribution Phase of a Reliable Message Distribution Protocol

25

Note that when a corrupt party forwards a message to an honest party, this does not contribute
anything to the communication complexity. This property will be important when we analyze
the communication complexity of our AVSS protocol on the “happy path”. The reason this type of
forwarding does not contribute anything is that in defining communication complexity, we count the
number of bits sent by all honest parties to all parties. One might argue that this is a theoretical
distinction, and that in practice, one should count all bits sent and received by honest parties.
However, such a definition of communication complexity is unworkable, as it cannot be upper
bounded at all — corrupt parties may “spam” their honest peers with an unbounded amount
of data. In practice, honest parties would likely attempt to distribute their download bandwidth
equitably among all of its peers, and employ some kind of “spam prevention” strategy to protect
itself against peers who try to monopolize its download bandwidth.

4.1.3 Relation to AVID. In Section 3.2.4 we briefly recalled the notion of an AVID protocol. In
fact, the design of our protocol ΠRelMsgDst is inspired by the AVID protocol in the DispersedLedger
system [YPA+21]. In principle, one could build a reliable message distribution protocol simply by
running n instances of an AVID protocol concurrently, one for each input message mj : the retrieval
mechanism of the AVID protocol could be used both to deliver mj to Pj and to optionally forward
mj to other parties. So we could have simply implemented this generic strategy using the AVID
protocol in [YPA+21]. There are several reasons we did not do this:

– This generic strategy, instantiated with DispersedLedger’s AVID protocol, would result in a re-
liable message distribution protocol whose communication complexity in the distribution phase
is O(|m|+λ·n3) rather than O(|m|+λ·n2 ·log n). Note that the same communication complexity
would result if we instantiated with the AVID protocol in [DXR22].

– This generic strategy, instantiated with DispersedLedger’s AVID protocol, would result in a
reliable message distribution protocol where the number of rounds of communication in the
distribution phase was 4 rather than 3.

– In this generic strategy, where we use the retrieval mechanism of AVID to implement the
forwarding mechanism of reliable message distribution, we run into a subtle problem regarding
communication complexity. As noted above, in our reliable message distribution protocol, when
a corrupt party forwards its message to an honest party, this does not contribute anything to
the communication complexity. However, if we use the retrieval mechanism of AVID for message
forwarding, when a corrupt party attempts to forward its message to an honest party, all honest
parties must participate in the protocol, which contributes to the communication complexity.
So in this case, some additional mechanism would be required to prevent or at least detect
misusing the forwarding mechanism.

In addition to the above, we wanted to present a concrete reliable message distribution protocol
which we could then easily modify to add data privacy and so obtain a secure message distribution
protocol.

4.2 Secure Key Distribution

The above reliable message distribution protocol does not provide any data privacy. This can be
remedied by augmenting it with a protocol for secure key distribution, and then using these
secret keys to encrypt the messages and using ΠRelMsgDst to distribute the resulting ciphertexts.

26

We sketch briefly here the properties that a secure key distribution protocol should satisfy and
how to build one, and then below in Section 4.3, we show in how to integrate this protocol into our
protocol ΠSecMsgDst to obtain a secure message distribution protocol.

In a secure message distribution protocol, the goal is to have the sender S distribute a vector
of keys k = (k1, . . . , kn), so that each party Pj obtains kj . Here, if the sender S is honest, the
keys k1, . . . , kn are not input by the sender, but rather are generated by the protocol itself, and the
sender obtains the vector k as an output of the protocol; however, a corrupt sender S may effectively
choose and input an arbitrary vector k. In addition, just like for reliable message distribution, the
protocol should allow a party to forward a key that it has received to another party. Such a protocol
should satisfy analogous correctness and completeness (as well as input extractability) properties.
In addition, the following property should hold:

Privacy: If the sender S and party Pu are honest, and no honest party forwards ku to a
corrupt party, then the adversary learns nothing about ku.

To implement such a scheme, which we call ΠSecKeyDst, we modify the reliable message dis-
tribution protocol ΠRelMsgDst so that instead of encoding a key using an erasure code, we share
it using Shamir secret sharing. In more detail, let H : [0..n] × F → K be a cryptographic hash
function, where F is a large finite field and K is the key space. Let (η0, η1, . . . , ηn) be fixed sequence
of distinct elements in F .6

The sender proceeds as follows. For each i ∈ [n], the sender chooses a random polynomial
θi ∈ F<n−2t. Let sij := θi(ηj) for j ∈ [0..n]. The key ki is defined as ki := H(0, si0). The sender
builds a Merkle tree from ((H(1, si1), . . . ,H(n, sin)) with root ri. and sends to each Pj the
collection of values {(ri, πij , sij)}ni=1, where πi is a validation path for H(j, sij) under ri at j.

Upon receiving such a message from S, and validating it is of the correct form, each party Pj then
builds a Merkle tree for (r1, . . . , rn) with root r and echoes to each Pi the tuple (r, πi, ri, πij , sij),
where πi is a validation path for ri under r. The voting logic works just as before. In the output
stage, Pj waits for valid echo messages from a set of n−2t distinct parties Pi, and then reconstructs
a polynomial θ′j ∈ F [x]<n−2t via polynomial interpolation from {sij}i. It then builds a Merkle tree
from (H(1, θ′j(η1)), . . . ,H(n, θj(ηn))) with root r′j . If rj = r, it outputs the key H(0, θ′j(0)), and
otherwise outputs ⊥.

When Pj completes the distribution phase of the protocol, it can optionally forward kj to
another party Q by sending to Q the values it obtained in the last step of the distribution phase,
specifically, the values πj , rj along with the collection of n − 2t values {πji, sji}i. Party Q who
can validate this information and compute kj using the same logic used by Pj . This strategy can
obviously be adapted to allow a party to forward any key that it has received, either its own or one
that was forwarded to it.

We note that ΠSecKeyDst has some rough similarities to the asynchronous weak VSS protocol in
[DW20], but the goals and a number of details are quite different.

4.2.1 Correctness and completeness. One can easily adapt the analysis of ΠRelMsgDst to show
that ΠSecKeyDst satisfies the correctness and completeness (as well as input extractability) properties,
assuming the hash function used to implement the Merkle trees, as well as H, are collision resistant.

6 Note that the choice of the field F is an implementation detail and need not have any relationship to the ring A
used in the context of AVSS.

27

4.2.2 Proving privacy under the linear hiding assumption. To prove the privacy property
for ΠSecKeyDst, we make the following assumption on the hash function H : [0..n]× F → K, which
we call the linear hiding assumption. This is a kind of indistinguishability assumption under a
“related key attack”.

This assumption is defined by a game in which the adversary first chooses a collection of pairs
{(ai, bi)}i∈I , where I ⊆ [0..n] and each ai is nonzero. The task of the adversary is to distinguish
the distribution {

H(i, ai · s+ bi)
}
i∈I ,

where s ∈ F is randomly chosen, from the uniform distribution on KI . The assumption states that
no computationally bounded adversary can effectively distinguish these two distributions.

This assumption is certainly true in the random oracle model, assuming 1/|F | is negligible.
Indeed, if we model H as a random oracle, the best the adversary can do is evaluate H at many
points (i, s∗) for i ∈ I and s∗ ∈ F , and hope that s∗ = ai ·s+bi. So it seems a reasonable assumption.

We can use this assumption to prove the privacy of ΠSecKeyDst as follows. Assume the sender S
is honest and consider any one honest party. For this party, the sender chooses a random polynomial
θ ∈ F [x]<n−2t and computes sj := θ(ηj) for j ∈ [0..n]. Let C be the set of corrupt parties, which we
are assuming is of cardinality ≤ t < n− 2t, and let H := [n] \ C be the set of honest parties. During
the execution of the protocol, the adversary learns sj for j ∈ C. The only other information about
the polynomial θ that the adversary learns is derived as a function of H(i, si) for i ∈ H. We want
to argue that given this information, the adversary cannot distinguish the actual key H(0, s0) from
a random key, under the linear hiding assumption.

Without loss of generality, we may give the adversary even more information, namely let C′ ⊆ [n]
be an arbitrary set of size exactly n− 2t− 1 containing C, and let us assume that the adversary is
given sj for j ∈ C′ and H(i, si) for i ∈ H′ := [n] \ C′. By Lagrange interpolation, for each i ∈ H′,
there exist nonzero constants {λij}j∈C′∪{0} in the field F such that

si =
∑

j∈C′∪{0}

λij · sj .

The indistinguishability of H(0, s0) from random follows directly from the linear hiding assumption,
where in the attack game for that assumption, we use the adversarially chosen pairs

{(ai, bi)}i∈H′∪{0},

where

(ai, bi) =

{
(λi0,

∑
j∈C′ λij · sj), if i ∈ H′;

(1, 0), if i = 0.

That proves the privacy property of a single honest party’s key. The proof can easily be extended
to cover all honest parties’ keys by a standard “hybrid” argument.

We note that the indistinguishability property for keys, and the fact that the key space itself
must be large (as we are assuming the key space is the output space of a collision resistant hash),
implies that keys are unpredictable.

28

4.2.3 Domain separation strategies for H. Our construction uses the simple “domain sep-
aration” strategy for H, where we include both j and sij in the input to H. The inclusion of j
is not strictly necessary, but it yields a simpler and quantitatively better security analysis in the
random oracle model. In fact, if we include i as well in the input, we would obtain an even better
concrete security bound (avoiding the “hybrid” argument mentioned above). Moreover, as a prac-
tical matter, one should include even more contextual information as an input to H that identifies
the individual instance of the protocol, including the identity of the sender. This is not only good
security practice, but will also yield better concrete security bounds for a system in which many
instances of the protocol are run.

4.2.4 Communication complexity. Assuming individual keys are of size O(λ), the communi-
cation complexity of the distribution phase is O(λ · n2 · log n). If an honest party forwards a key to
another party, this adds O(λ · n · log n) to the communication complexity. Just as in Section 4.1.2,
hen a corrupt party forwards its key to an honest party, this does not contribute anything to the
communication complexity.

4.3 A Secure Message Distribution Protocol

We can build a protocol that securely realizes FSecMsgDst by using ΠSecKeyDst to securely distribute
secret keys that are used to encrypt messages using any semantically secure symmetric-key en-
cryption scheme, and then distributing the resulting ciphertexts using ΠRelMsgDst. In fact, we can
integrate the logic of ΠSecKeyDst directly into ΠRelMsgDst, so that there is just a single root r that
controls both keys and ciphertexts. The distribution phase of the resulting protocol ΠSecMsgDst is
given in Fig. 10. Here, c← Encrypt(k,m) encrypts the message m under the key k, producing the
ciphertext c, and m← Decrypt(k, c) performs the corresponding decryption.

When Pj completes the distribution phase of the protocol, it can optionally forward mj to
another party Q by sending to Q the values it obtained in the last step of the distribution phase,
specifically, the values πj , rj along with the collection of n− 2t values {πji, sji, fji}i. Party Q who
can validate this information and compute mj using the same logic used by Pj . This strategy can
obviously be adapted to allow a party to forward any message that it has received, either its own
or one that was forwarded to it.

The same comments on domain separation for H in Section 4.2.3 apply here as well.

We note that it may seem that the two-step approach of dispersing secret keys, and then
dispersing encrypted messages is superfluous. However, this is essential to get good communication
complexity by taking advantage of the fact that secret keys are much shorter than messages.

4.3.1 Security and completeness. If ΠSecMsgDst securely realizes the FSecMsgDst functionality,
then it will surely satisfy the corresponding correctness and privacy (as well as input extractability)
properties. In the security analysis of our AVSS protocol, we will want to work directly with the
FSecMsgDst functionality, rather than with these specific security properties (which are anyway too
informal).

Recall from Section 3.3 the notion of a restricted environment, which is an environment in the
UC framework that never instructs an honest party to forward its own message when S is honest.
Such restricted environments are actually sufficient for our AVSS application.

It is straightforward to show that if

29

ΠSecMsgDst

// Sender S with input m = (m1, . . . ,mn)
for i ∈ [n]: choose a random polynomial θi ∈ F<n−2t, and compute

sij ← θi(ηj), kij ← H(j, sij) for j ∈ [0..n] and ci ← Encrypt(ki0,mi)
for i ∈ [n]: encode ci as (fi1, . . . , fin) using an (n, n− 2t) erasure code

and build the Merkle tree for ((ki1, fi1), . . . , (kin, fin)) with root ri
for j ∈ [n] : send (send, {(ri, πij , sij , fij)}ni=1) to Pj , where

πij is the validation path for (kij , fij) under ri at j for all i ∈ [n]

// Receiving party Pj

acquired← false, voted← false, done← false

while not done do
wait until either:

not acquired and for some {(ri, πij , sij , fij)}ni=1: received (send, {(ri, πij , sij , fij)}ni=1) from S ⇒
acquired← true
if πij is a correct validation path for (H(j, sij), fij) under ri at j for all i ∈ [n] then

build the Merkle tree for (r1, . . . , rn) with root r
for i ∈ [n]: send (echo, r, πi, ri, πij , sij , fij) to Pi,

where πi is the validation path for ri under r

not voted and for some r: received (echo, r, ·, ·, ·, ·, ·) from n− t distinct parties ⇒
send (vote, r) to P1, . . . , Pn

voted← true

not voted and for some r: received (vote, r) from t+ 1 distinct parties ⇒
send (vote, r) to P1, . . . , Pn

voted← true

voted and for some r: received (vote, r) from n− t distinct parties ⇒
// output stage
wait until: for some πj , rj , I ⊆ [n], {πji, sji, fji}i∈I :

πj is a correct validation path for rj under r at j, |I| = n− 2t, and for all i ∈ I:
received (echo, r, πj , rj , πji, sji, fji) from Pi and
πji is a correct validation path for (H(i, sji), fji) under rj at i

reconstruct the ciphertext c′j from the fragments {fji}i∈I
compute the fragments (f ′

j1, . . . , f
′
jn) of ciphertext c

′
j

construct the polynomial θ′j ∈ F [x]<n−2t by interpolation through the points {(ηi, sji)}i∈I
compute the values s′ji ← θ′j(ηi), k

′
ji ← H(i, s′ji) for i ∈ [0..n]

build the Merkle tree for ((k′
j1, f

′
j1), . . . , (k

′
jn, f

′
jn)) with root r′j

if rj = r′j
then output Decrypt(k′

j0, c
′
j)

else output ⊥
done← true

Fig. 10. The Distribution Phase of a Secure Message Distribution Protocol

30

– H and the hash function used for building Merkle trees are collision resistant,
– H satisfies the linear hiding assumption, and
– the encryption scheme used to encrypt messages is semantically secure

then protocol ΠSecMsgDst securely realizes FSecMsgDst with respect to restricted environments.
It is also straightforward to show that if H and the hash function used for building Merkle

trees are collision resistant, then ΠSecMsgDst satisfies the completeness property for secure message
distribution.

One can in fact prove that ΠSecMsgDst securely realizes FSecMsgDst without restriction under
the same assumptions on the hash functions, but where the encryption scheme is built using a
random oracle to make it “equivocable” — namely, where we define Encrypt(k,m) := hash(k)⊕m,
and model hash as a random oracle. We also speculate that under these assumptions, ΠSecMsgDst

securely realizes FSecMsgDst under adaptive corruptions (although we have not worked out the details
of this).

4.3.2 Communication complexity. The communication complexity of the distribution phase
is O(|m| + λ · n2 · log n). If an honest party forwards a message mu to another party, this adds
O(|mu|+λ·n·log n) to the communication complexity. Just as in Section 4.1.2, when a corrupt party
forwards a message to an honest party, this does not contribute anything to the communication
complexity.

5 Our AVSS protocol

We now present and analyze our new AVSS protocol. This is a generic protocol which works over
an arbitrary ring. We will show how to instantiate it over finite fields and Galois rings. As will see,
different instantiations lead to different failure bounds in the analysis.

5.1 Description of the protocol

Notation is as in Section 2; specifically, we have a finite commutative ring A and a vector of
evaluation coordinates e = (e1, . . . , en) ∈ An that forms an exceptional sequence, that is, we have
ei − ej ∈ A∗ for all i ̸= j.

As usual, we assume a network of n parties P1, . . . , Pn, of which at most t < n/3 of them may
be statically corrupted, and which are connected by secure point-to-point channels (providing both
privacy and authentication). We also assume network communication is asynchronous.

Our AVSS protocol Πavss1 is presented in Fig. 11. It is an (n, d, L)-AVSS protocol over A (with
respect to e). The protocol requires t < d ≤ n− 2t. In addition, it makes use of a variation of the
probabilistic degree check from [DN07] (a similar probabilistic check was used in a different context
in [BGR98]). This probabilistic check involves several parameters:

– A ring extension B of A.
– A repetition parameter R, which is a positive integer.
– A challenge space Θ, which is a subset of BL.

For example, for a given subset of E , we might use the challenge space

ΘE
pow := {(θ, θ2, . . . , θL) : θ ∈ E}

or the challenge space
ΘE

lin := EL.

31

In choosing the above parameters, there are various trade-offs between security, efficiency, and
underlying cryptographic assumptions. These will be discussed below.

Our AVSS protocol makes use of several subprotocols. We describe our AVSS protocol as a
hybrid protocol that makes use of the following ideal functionalities:

– FBeacon for a random beacon, as described in Section 3.1, whose output space is defined to be

Ω :=
{ {

θ
(r)
ℓ

}
r∈[R],ℓ∈[L] : (θ

(r)
1 , . . . , θ

(r)
L) ∈ Θ for r = 1, . . . , R

}
,

where R and Θ are the parameters discussed above;
– FReliableBroadcast for reliable broadcast, as described in Section 3.2;
– FOneSidedVote for one-sided voting, as described in Section 3.2.5;
– FSecMsgDst for secure message distribution, as described in Section 3.3.

5.1.1 Additional commentary. Analogously to what we did in the description of various
broadcast and broadcast-like protocols in Sections 3 and 4, we express the logic for the dealer as
a separate process, even though the dealer is also one of the receiving parties. In particular, the
dealer will receive an output from the random beacon, just like the receiving parties. We also define
a subroutine Happy, which returns a Boolean value and may be called by any party.

The protocol starts when the dealer D is initiated with inputs f1, . . . , fL ∈ A[x]<d. The dealer
generates random “blinding” polynomials g(r) ∈ B[x]<d for r ∈ [R]. The dealer then computes
shares of its input and “blinding” polynomials, that is, vℓ,j := fℓ(ej) ∈ A for ℓ ∈ [L], j ∈ [n]

and w
(r)
j := g(r)(ej) ∈ B for r ∈ [R], j ∈ [n]. Next, the dealer sends each party Pj its share of

all of these polynomials as a message mj via the secure message distribution subprotocol. That

is, mj =
(
{vℓ,j}ℓ∈[L], {w(r)

j }r∈[R]

)
∈ A[L] × B[R] — but if the dealer is corrupt, it may be that

mj = ⊥.
Upon receiving mj via the secure message distribution subprotocol, party Pj will initiate the

random beacon subprotocol, and then wait for the output {θ(r)ℓ }r∈[R],ℓ∈[L] of the random beacon.
The random beacon output serves as a random “challenge”.

Given the random “challenge” from the beacon, the dealer D computes “response” polynomials

h(r) := g(r) +
∑

ℓ∈[L] θ
(r)
ℓ · fℓ ∈ B[x]<d for r ∈ [R], and then broadcasts these polynomials to all

parties using the reliable broadcast subprotocol.
Upon receiving these “response” polynomials via the reliable broadcast subprotocol, each party

Pj checks the validity of the data it has received so far (this is done using the Happy subroutine in

the figure). Essentially, Pj checks the identities h(r)(ej) = w
(r)
j +

∑
ℓ∈[L] θ

(r)
ℓ · vℓ,j for r ∈ [R]. If the

dealer is honest, this check will certainly pass; however, if the dealer is corrupt, it may fail (and
will certainly fail if mj = ⊥). If this check passes, Pj sets happyj to true, and we say Pj is “happy”;
otherwise, Pj sets happyj to false, and we say Pj is “unhappy”.

Next, each party Pj initiates the one-sided voting subprotocol if happyj is true. If this subprotocol
returns done, the parties enter the output stage.

In the output stage, a “happy” party Pj may immediately output its shares {vℓ,j}ℓ∈[L], but
waits around in case it receives a valid “complaint” from any “unhappy” party, to which it will
respond by broadcasting an “assist” to all parties. Conversely, an “unhappy” party Pj broadcasts
a “complaint” against the dealer and then waits for sufficiently many valid “assists”, which will
allow it to construct its correct shares.

32

Πavss1

// Dealer D with input f1, . . . , fL ∈ A[x]<d

for all r ∈ [R]: choose random g(r) ∈ B[x]<d

for all ℓ ∈ [L], j ∈ [n]: compute vℓ,j ← fℓ(ej) ∈ A
for all r ∈ [R], j ∈ [n]: compute w

(r)
j ← g(r)(ej) ∈ B

invoke operation Input(distribute, (m1, . . . ,mn)) on FSecMsgDst, where

mj :=
(
{vℓ,j}ℓ∈[L], {w(r)

j }r∈[R]

)
∈ A[L] × B[R] for all j ∈ [n]

wait for FBeacon to deliver a message Output({θ(r)ℓ }r∈[R],ℓ∈[L]) // with each θ
(r)
ℓ ∈ B

for all r ∈ [R]: compute h(r) ← g(r) +
∑

ℓ∈[L] θ
(r)
ℓ · fℓ ∈ B[x]<d

invoke operation Input({h(r)}r∈[R]) on FReliableBroadcast

// Receiving party Pj

wait for FSecMsgDst to deliver the message Output(distribute,mj) // mj may be ⊥ if D is corrupt
invoke operation Input(init) on FBeacon

wait for FBeacon to deliver a message Output({θ(r)ℓ }r∈[R],ℓ∈[L]) // with each θ
(r)
ℓ ∈ B

wait for FReliableBroadcast to deliver a message Output({h(r)}r∈[R])

happyj ← Happy(j, {θ(r)ℓ }r∈[R],ℓ∈[L],mj , {h(r)}r∈[R])

if happyj then invoke operation Input(init) on FOneSidedVote

wait for FOneSidedVote to deliver Output(done)

// output stage
if happyj then

output {vℓ,j}ℓ∈[L]

wait until: for some index i ∈ [n] and message mi:
FSecMsgDst delivers Output(forward, i, i, complaint,mi)

and not Happy(i, {θ(r)ℓ }r∈[R],ℓ∈[L],mi, {h(r)}r∈[R])
for all i∗ ∈ [n] \ {j}:

invoke operations Input(forward, j, i∗, assist) and Input(forward, i, i∗, report) on FSecMsgDst

else
for all i∗ ∈ [n] \ {j}: invoke operation Input(forward, j, i∗, complaint) on FSecMsgDst

wait until: for some I ⊆ [n], {mi}i∈I :
|I| = d and for all i ∈ I:

FSecMsgDst delivers Output(forward, i, i, assist,mi)

and Happy(i, {θ(r)ℓ }r∈[R],ℓ∈[L],mi, {h(r)}r∈[R])
for each i ∈ I: write mi as

(
{vℓ,i}ℓ∈[L], ·

)
for all ℓ ∈ [L]: compute v∗ℓ,j ←

∑
i∈I λI

i,jvℓ,i ∈ A
// the values λI

i,j are Lagrange interpolation coefficients
output {v∗ℓ,j}ℓ∈[L]

// Auxiliary routine

Happy(j, {θ(r)ℓ }r∈[R],ℓ∈[L], m, {h(r)}r∈[R]) := // j ∈ [n], {θ(r)ℓ }r∈[R],ℓ∈[L] ∈ B[R]×[L]

return
(
m is of the form

(
{vℓ}ℓ∈[L], {w(r)}r∈[R]

)
∈ A[L] × B[R], and for all r ∈ [R]:

h(r) ∈ B[x]<d and h(r)(ej) = w(r) +
∑

ℓ∈[L] θ
(r)
ℓ · vℓ

)

Fig. 11. An AVSS protocol over A

33

A “complaint” is a message that is forwarded from a party via the secure message distribution
subprotocol (with a complaint tag) that serves as a proof that it is indeed “unhappy” — and that
the dealer must be corrupt. An “assist” is also a message that is forwarded from a party via the
secure message distribution subprotocol (with an assist tag). These “complaints” and “assists”
contain the original message received by a party in the secure message distribution subprotocol,
and any other party may validate these messages (from the point of view of the “complaining”
and “assisting” party). Of course, if the dealer is honest, there cannot be any “unhappy” parties
— honest or corrupt. When an “unhappy” party receives d valid “assists”, this will allow it to
compute its correct shares by polynomial interpolation. In the figure, for a subset I ⊆ [n] of size d,
we denote by {λI

i,j}i∈I,j∈[n] the “Lagrange coefficients”, which are elements of A that satisfy

f(j) =
∑

i∈I
λI
i,j · f(i)

for any polynomial f ∈ A[x]<d, and which are efficiently computable. An “unhappy” party may use
these Lagrange coefficients to compute its shares from the shares of its “happy” peers that provided
valid “assists”.

Note that in the protocol, when a party broadcasts an “assist” it also broadcasts a “report” —
this is a copy of the original “complaint” that triggered the “assist” broadcast, and it is sent using
the forwarding mechanism (with a report tag). The purpose of this is to ensure that if any honest
party broadcasts a “complaint” or an “assist”, then all honest parties will eventually receive evidence
that implicates the corrupt dealer. We do not specify here how parties process this evidence. For
example, in the short term, once an honest party has identified a corrupt party, the honest party can
safely ignore all messages from the corrupt party in the future (or at least until some “proactive
refresh” of the system occurs). When sufficiently many honest parties start ignoring a corrupt
dealer, that dealer will no longer be able to trigger any more “complaints” or “assists” — at least,
assuming we use protocol ΠSecMsgDst for secure message distribution (or something similar), which
guarantees that if sufficiently many honest parties ignore the dealer, no honest party will even
receive any shares. In the longer term, the honest parties can vote to remove the corrupt party
from the network. Also, such evidence of corrupt behavior could lead to legal or financial jeopardy
for the corrupt party, and this in itself may be enough to discourage such behavior.

Without this extra step of broadcasting a “report”, an adversary could force the protocol off
the “happy path”, causing the communication complexity to blow up, but without ever leading to
a situation where all honest parties have obtained evidence that implicates the corrupt dealer. For
example, a corrupt dealer could give bad shares to a corrupt party Pj , and then Pj could “complain”
to just a subset S of the honest parties. The members of S would all see the “complaints” and
broadcast “assists”, but honest parties outside of S would never see any “complaints”, and the
“assists” by themselves do not implicate the corrupt dealer.

If the dealer is honest, it is fairly easy to see that all honest parties will eventually output their
shares of the dealer’s polynomials. Moreover, the “blinding” polynomials, together with the fact
that no corrupt party can lodge a valid complaint against an honest dealer, will ensure that the
adversary obtains no information about the dealer’s polynomials other than the shares belonging
to corrupt parties.

Now suppose the dealer is corrupt. In this case, if any party enters the output stage, the one-
sided voting protocol ensures that at least n−2t ≥ d honest parties are “happy” and that all honest

34

parties eventually enter the output stage. In addition, these d “happy” honest parties will ensure
that any “unhappy” honest parties eventually receive the “assists” that they need to obtain their
shares. In the security proof, we will argue that with overwhelming probability, the shares of all
the “happy” parties (honest or corrupt) must lie on polynomials of degree less than d, as required.
For this argument to work, it is crucial that honest parties do not initiate the random beacon
subprotocol before they receive their message from the secure message distribution subprotocol
— this ensures that the “challenge” is not revealed before the dealer has committed to the entire
message vector (m1, . . . ,mn).

Although our protocol is a secure AVSS protocol, is has an interesting property. Namely, a
corrupt dealer does not really commit to its input polynomials until after it obtains the “challenge”
from the beacon and reveals its “response” polynomials. For example, let n = 3t+1 and d = t+1.
A corrupt dealer can give the honest parties completely uncorrelated random shares, and after
receiving the “challenge”, it can choose a random set of t + 1 honest parties, interpolate through
just these parties’ shares to obtain corresponding input polynomials f1, . . . , fL, and then compute
corresponding “response” polynomials. These t+1 honest parties together with the t corrupt parties
can force all honest parties to output shares of f1, . . . , fL. Of course, in this example, the remaining
t honest parties will “complain” against the dealer, proving that the dealer is corrupt.

5.2 Security analysis

In order to analyze the failure probability of this generic protocol, we need the following definition.

Definition 5.1 (Inner product bound). With A, B, and Θ ⊆ BL as above, we define

χ(A,B, Θ)

to be the maximum, over all b ∈ B and nonzero a ∈ AL, of the probability that

b+ ⟨a,θ⟩ = 0,

where θ is chosen uniformly at random from Θ.

In a typical instantiation, one would choose E to be a maximum sized exceptional set in B so
that we can apply Schwarz-Zippel (Lemma 2.1). In this setting, we have: if Θ = ΘE

pow, then

χ(A,B, Θ) ≤ L/|E|, and if Θ = Θlin = EL, then χ(A,B, Θ) = 1/|E|. Choosing a larger ring B
will allow one to increase the size of E , however this comes at the expense of increasing the size of
the elements which need to be transmitted.

Theorem 5.1 (Security of Πavss1). Assume 2n · χ(A,B, Θ)R is negligible. Then we have:

(i) Πavss1 securely realizes Favss in the (FSecMsgDst,FBeacon,FReliableBroadcast,FOneSidedVote)-hybrid
model.

(ii) If Πavss1 is instantiated with concrete protocols for FSecMsgDst, FBeacon, FReliableBroadcast, and
FOneSidedVote that are secure (i.e., securely realize the corresponding functionality) and com-
plete (i.e., satisfy the corresponding completeness property), then the resulting concrete pro-
tocol
(a) securely realizes Favss, and

35

(b) satisfies the AVSS completeness property.

Proof. We start with statement (i) of the theorem. To that end, we need to show that there is
a simulator that interacts with Favss in the ideal world such that no environment can effectively
distinguish the ideal world from the hybrid world.

Without loss of generality, we may assume that in the hybrid world, the adversary is a “dummy”
adversary that essentially acts as a “router” between the environment and the hybrid functionalities.
In addition, in the ideal world, our simulator is actually in charge of implementing the hybrid
functionalities. In particular, in the ideal world, any messages sent from (resp., to) the adversary
to (resp., from) these hybrid functionalities are actually sent directly to (resp., from) our simulator
— this including the inputs (resp., outputs) of corrupt parties.

If the dealer is honest, the proof reduces to showing that the values {h(r)}r∈[R] and {w(r)
j }r∈[R]

for j ∈ C do not leak any extra information. This is a standard argument, based on the randomness
supplied by the “blinding” polynomials {g(r)}r∈[R]. In more detail, the ideal functionality Favss

gives the simulator the values vℓ,j for ℓ ∈ [L] and j ∈ C. For r ∈ [R], the simulator then chooses
h(r) ∈ B[x]<d at random, and then computes

w
(r)
j ← h(r)(ej)−

∑

ℓ∈[L]

θ
(r)
ℓ · vℓ,j (for j ∈ C).

Note that the simulator can also generate the random beacon values θ
(r)
ℓ in advance of this com-

putation.

The more interesting case is that when the dealer is corrupt. The crux of the proof in this case is
showing that by the first point in time at which any honest party outputs its shares, the simulator
can effectively extract corresponding polynomials f1, . . . , fL ∈ F [x]<d. The proof is similar to the
analysis in [DN07]. The main difference is that our protocol may terminate successfully if any subset
of n − 2t honest parties is happy, and this subset may be determined after the random beacon is
revealed. A simple way to deal with this is to apply the union bound to the collection of all subsets
of parties, which is where the factor 2n in the theorem statement comes from.

In more detail, consider the inputs (m1, . . . ,mn) to FSecMesDst, where each mj is either ⊥ or of
the form

mj =
(
{vℓ,j}ℓ∈[L], {w(r)

j }r∈[R]

)
, (1)

and which must be submitted to FSecMsgDst and hence to our simulator, before the random beacon
is revealed. (Here, we are essentially using the input extractability property of the secure message
distribution protocol.) We will generally ignore indices j such that mj = ⊥.

Consider the later point in time at which some any party first enters the output stage. At this
point in time, we can define P∗ to be the set of indices j ∈ [n] for which Pj is happy, as determined
by the input mj , the random beacon value, and the “response” polynomials h(r). This set includes
all parties, including honest parties Pj that have not computed happyj , as well as corrupt parties.
By the correctness property of the one-sided voting protocol, we have |P∗ ∩H| ≥ n− 2t ≥ d.

For each ℓ ∈ [L], the simulator extracts D’s input polynomial fℓ as the unique polynomial of
degree less than |P∗| that interpolates through the points {(ej , vℓ,j)}j∈P∗ . The simulation fails iff
any of these polynomials has degree ≥ d. Indeed, if any of these polynomials has degree ≥ d, then
the simulation obviously fails. Conversely, if all of these polynomials have degree < d, then one
sees that the complaint mechanism works correctly: the honest parties hold enough good shares

36

to reconstruct the polynomials by themselves (since |P∗ ∩ H| ≥ d); moreover, the corrupt parties
cannot contribute bad shares during this process (which is why we include corrupt parties in the
definition of P∗).

We want to bound the probability that the simulation fails. To this end, let us first make some
definitions. Consider any fixed inputs (m1, . . . ,mn) to FSecMsgDst, where each mj = ⊥ or is of the
form (1). Consider any set P ⊆ [n] with n′ := |P| ≥ d and mj ̸= ⊥ for all j ∈ P. We say P is
d-consistent if for each ℓ ∈ [L], the points {(ej , vℓ,j)}j∈P lie on a polynomial over A of degree less

than d. Consider any fixed element {θ(r)ℓ }r∈[R],ℓ∈[L] of the output space Ω of the random beacon.

We say P is d-consistent modulo {θ(r)ℓ }r∈[R],ℓ∈[L] if for each r ∈ [R], the points

{ (
ej , w

(r)
j +

∑

ℓ∈[L]

θ
(r)
ℓ · vℓ,j

) }
j∈P

lie on a polynomial over B of degree less than d.

Claim: If P is not d-consistent, then the probability that it is d-consistent modulo a randomly
chosen element of Ω is at most χ(A,B, Θ)R.

To prove the claim, we consider the (n′, d)-Reed-Solomon code over A with respect to the eval-
uation coordinates {ej}j∈P , and the corresponding check matrix C ∈ An′×(n′−d). We also consider
the corresponding “extended” (n′, d)-Reed-Solomon code over the extension ring B, which has the
same check matrix C as our original code (since the evaluation coordinates lie in A).

Now suppose P is not d-consistent. For ℓ ∈ [L], define the vector

vℓ := {vℓ,j}j∈P ∈ An′
.

The assumption that P is not d-consistent means that for some ℓ∗ ∈ [L], the vector vℓ∗ is not a
codeword, which means vℓ∗ · C ̸= 0. So if we define the matrix Q ∈ AL×n′

whose ℓ-th row is vℓ for
ℓ ∈ [L], then Q · C ∈ AL×(n′−d) is nonzero matrix.

Now suppose P is d-consistent modulo {θ(r)ℓ }r∈[R],ℓ∈[L]. For each r ∈ [R], define

w(r) := {w(r)
j }j∈P ∈ Bn′

and θ(r) := (θ
(r)
1 , . . . , θ

(r)
L) ∈ Θ

so that

w(r) + θ(r) ·Q

lies in the extended Reed-Solomon code, which implies

w(r) · C + θ(r) ·Q · C = 0. (2)

Since Q · C is a nonzero matrix, we can choose one nonzero column of Q · C, and (2) implies that
for some fixed b ∈ B and fixed, nonzero a ∈ AL, we have

b+ ⟨a,θ(r)⟩ = 0. (3)

So for each r ∈ [R], if we choose θ(r) ∈ Θ at random, equation (3) holds with probability at
most χ(A,B, Θ), and repeating this R times gives the desired probability and proves the claim.

37

We now return to the task of bounding the probability that the simulation fails. If the simulation
fails, this implies that P∗ is not d-consistent yet is d-consistent modulo the output of the random
beacon. Now, even though the inputs to FSecMsgDst are chosen before the random beacon is revealed,
the subset P∗ is chosen by the adversary after the random beacon is revealed. Nevertheless, for the
simulation to fail, the following event must occur: the adversary submits inputs to FSecMsgDst such
that there exists a subset P ⊆ [n] of the required form that is not d-consistent but ends up being
d-consistent modulo the output of the random beacon. As there are at most 2n choices for P, by
the union bound, the probability that the simulation fails is therefore at most 2n · χ(A,B, Θ)R.

That proves statement (i) of the theorem. Statement (ii)(a) is a direct consequence of state-
ment (i) and the UC composition theorem. Statement (ii)(b) easily follows from the security and
completeness properties of the concrete subprotocols, and the logic of Πavss1, along the lines dis-
cussed in Section 5.1.1. ⊓⊔

Note that we obtain a somewhat better failure bound when we use Θ = ΘE
lin. However, in this

instantiation, our random beacon has to output very long vectors (θ1, . . . , θL) ∈ EL. As discussed
in Section 3.1.2, this could be avoided by using a random beacon that outputs a short seed that is
then stretched using a cryptographic pseudorandom generator G. This implementation will indeed
be secure if we model G as a random oracle. However, we cannot justify the security of this imple-
mentation if we simply assume that G is a pseudorandom generator. As discussed in Section 3.1.2,
to do this, it would suffice that the failure event in Theorem 5.1 can be efficiently detected as
a function of the output of G and data that is available to the adversary prior to revealing the
beacon. Unfortunately, this event is a union over an exponentially large set of events, and so is not
efficiently detectable.

Note that the factor 2n in the failure bound in Theorem 5.1 does not arise in the analysis
of the corresponding protocol in [DN07]. For modest sized n, this should be acceptable, using a
larger extension B, or larger value of R, as necessary. Of course, using a larger B or R can impact
communication complexity. This is discussed in detail below in Section 5.3. However, in some
important applications, A is a field of size ≈ 2256, and so for n ≤ 128, we already get nearly 128-bit
security with B = A and R = 1.

An example. Here is a simple example that shows why an exponential factor in the failure probabil-
ity in Theorem 5.1 seems hard to avoid. This example gives a specific, efficient adversary and specific
protocol parameters such that the adversary breaks the security of the protocol with probability
2Ω(n) · χ(A,B, Θ)R.

Let n = 3t + 1, d = t + 1, L = 1, R = 1, B = A, and Θ = Θpow. The corrupt dealer starts the
protocol by distributing shares of g := xt+2 + xt+1 and f := xt+2 (which play the roles of g(1) and
f1, respectively, in the protocol). Now consider any set P ⊆ [n] of size t+ 2, and define

g(P) := g mod
∏

j∈P
(x− ej)

and
f (P) := f mod

∏

j∈P
(x− ej).

Then we have
g(P) = (1 + T (P)) · xt+1 + lower order terms

38

and

f (P) = T (P) · xt+1 + lower order terms,

where

T (P) := −
∑

j∈P
ei.

For a given challenge θ, the adversary will break the protocol if it can find a subset P ⊆ H of size
t+ 2 such that

(1 + T (P)) + θ · T (P) = 0,

or in other words

T (P) = −1/(1 + θ).

Indeed, in this case, the adversary can compute a response polynomial that makes the parties
in P happy, even though their shares do not lie on a polynomial of degree at most t. Moreover,
the t corrupt parties, together with the parties in P, can force the one-sided voting protocol to
succeed, so all honest parties enter the output stage. To obtain an efficient attack that succeeds
with probability at least 2Ω(n)/|B|, it suffices that the map P 7→ T (P) is (nearly) one-to-one and
easy to invert. For example, if |A| > 2n and the evaluation coordinates are 1, 2, . . . , 2n−1, then this
is the case.

5.3 Communication Complexity

We now consider the communication complexity of Πavss1. Here, the communication complexity of
a protocol is defined to be the sum of the length of all messages sent by honest parties (to either
honest or corrupt parties) over the point-to-point channels.

We make a distinction between the “happy path” and the “unhappy path”. To enter the “un-
happy path”, a corrupt party must provably misbehave. In our protocol, this corresponds to the
situation where a party complains against a corrupt dealer. If this happens, all honest parties will
learn of this and can take action: in the short term, the honest parties can safely ignore this party,
and in the longer term, the corrupt party can be removed from the network. Also, such provable
misbehavior could lead to legal or financial jeopardy for the corrupt party, and this in itself may be
enough to discourage such behavior. Note that the “happy path” includes corrupt behavior, includ-
ing collusion among the corrupt parties, as well as behavior that is clearly corrupt as observed by
an individual honest party, but that cannot be used as reliable evidence to convince other honest
parties or an external authority of corrupt behavior.

For these reasons, we believe it makes sense to make a distinction between the complexity of
the protocol on the “happy path” versus the “unhappy path”.

We also make a couple of simplifying assumptions. Namely, we assume that B = A and that Θ =
ΘE

lin, where E is an exceptional set of maximal size. In this case, the failure bound in Theorem 5.1
becomes 2n/|E|R. We will want to set R so that this bound is negligible. This is discussed below.

5.3.1 The Happy Path. Each message mj input into the FSecMsgDst has size

O ((L+R) · log|A|) .

39

Our protocol ΠSecMsgDst for secure message distribution from Section 4 has communication com-
plexity O(|m|+ λ · n2 · log n), and so its contribution to the total communication complexity is

O
(
n · (L+R) · log|A|+ λ · n2 · log n

)
.

The message input to FReliableBroadcast is of size O(n · R · log|A|). Using protocol ΠCompactBroadcast

from Section 3.2.2, this contributes

O
(
n2 ·R · log|A|+ λ · n2 · log n

)

to the overall communication complexity. We may implement FOneSidedVote as in Section 3.2.5, which
contributes O(n2) to the communication complexity. We shall ignore for now the communication
complexity of the random beacon. Thus the total communication complexity, ignoring the random
beacon, is

O
(
n · (L+ nR) · log|A|+ λ · n2 · log n

)
. (4)

If we want σ bits of security, we should select R as

R =
⌈ σ + n

log2|E|
⌉
. (5)

With this setting of R, our communication complexity bound (4) becomes

O

(
n · L · log|A|+ n2 · (σ + n) · log|A|

log|E| + λ · n2 · log n
)
. (6)

5.3.2 Finite Field Case. Suppose A is a field extension of degree δ over the finite field S = Fq.
In this case, E = A and |A| = |S|δ; therefore, (6) simplifies to

O
(
n · L · δ · log|S|+ n3 + n2 · σ + λ · n2 · log n

)
,

and if max{n, σ} ≤ λ, this simplifies even further to

O
(
n · L · δ · log|S|+ λ · n2 · log n

)
.

While we have ignored the communication complexity of the random beacon, we may assume
it is bounded by a polynomial in n and λ (which, in practice, is typically O(n2λ)). Therefore,
for sufficiently large L (polynomial in n, σ, and λ) the amortized communication complexity per
sharing is

O(n · δ · log|S|).
Suppose that our AVSS protocol is used in an application where the secrets lie in the field S = Fq,
where q ≤ n. In this case, as discussed in Section 2.4, we will have to run our protocol over a field A
of degree δ over S, where δ = ⌈logq(n+ 1)⌉. In this case, the amortized communication complexity
per sharing is

O(n · logq n · log|S|),
which is

O(n · log n).

40

5.3.3 Galois Ring Case. Suppose A is a Galois ring of degree δ over the ring S = Z/(pk). In
this case, |A| = |S|δ = pk·δ but |E| = pδ, and (6) simplifies to

O
(
n · L · δ · log|S|+ n2 · (σ + n) · k + λ · n2 · log n

)
.

Therefore, for sufficiently large L (polynomial in n, σ, λ, and k) the amortized communication
complexity per sharing is

O(n · δ · log|S|).
Suppose that our AVSS protocol is used in an application where the secrets lie in the ring S =
Z/(pk), where p ≤ n. In this case, as discussed in Section 2.4, we will have to run our protocol over a
Galois ring A of degree δ over S, where δ = ⌈logp(n+1)⌉. In this case, the amortized communication
complexity per sharing is

O(n · logp n · log|S|),
which is

O(n · log n · k).

5.3.4 The Unhappy Path. For the “unhappy path”, the communication complexity of the
secure message distribution protocol may blow up by a factor of n. So in this case, the bound (4)
becomes

O
(
n2 · (L+R) · log|A|+ λ · n3 · log n

)
,

and choosing R as in (5), the bound (6) becomes

O

(
n2 · L · log|A|+ n2 · (σ + n) · log|A|

log|E| + λ · n3 · log n
)
.

Thus, all of our estimates above for amortized communication complexity per sharing get blown
up by a factor of n.

5.3.5 Message complexity. The message complexity of Πavss1 on both the “happy path” and
the “unhappy path”, not including the random beacon, is O(n2). Here, the message complexity of
a protocol is defined to be the total number of messages sent by honest parties (to either honest
or corrupt parties) over the point-to-point channels. In practice, the message complexity of the
random beacon is typically also O(n2).

6 Restricting the secrets to a subring

We assume here that a secret is encoded, as usual, as the constant term of a polynomial. As
discussed in Section 2.4, our AVSS protocol may be used in an application where the secrets lie in
a ring S that does not contain the appropriate evaluation coordinates, and we are forced to run our
AVSS protocol in an extension ring A that does contain such coordinates. In this section, we give
an AVSS protocol that enforces the restriction that the shared secret in fact lies in S. Our protocol
works when S and A are Galois rings, and does secret sharing over a related ring A′. Our AVSS
protocol that enforces this restriction makes use of a subprotocol for secret sharing over A′. Our
technique for ensuring inputs lie in S makes use of the checking technique of extending the p-adic
precision one works with, which was first introduced in [CDE+18].

41

6.1 Auxiliary rings

We begin by describing the relationship between the various rings involved. Let G(z) ∈ Z[z] be a
monic polynomial of degree ϵ ≥ 1. Let F (y, z) ∈ Z[y, z] be a bivariate polynomial of the form

F (y, z) = F0(z) + F1(z) · y + · · ·+ Fδ−1(z) · yδ−1 + yδ,

where δ ≥ 1. For each m ≥ 1, define the rings

S(m) := Z[z]/(pm, G(z)) and A(m) := Z[y, z]/(pm, G(z), F (y, z)).

We naturally view Z/(pm) ⊆ S(m) ⊆ A(m) as a tower of ring extensions, where S(m) has degree
ϵ over Z/(pm) and A(m) has degree δ over S(m). Indeed, every element of A(m) can be expressed
uniquely as the image of a polynomial in Z[y, z] of the form A0(z)+A1(z) · y+ · · ·+Aδ−1(z) · yδ−1,
where for i = 0, . . . , δ− 1, we have degAi < ϵ, and each coefficient of Ai lies in the interval [0, pm).
The ring S(m) corresponds to the subset of such polynomials of degree at most 0 in y. The ring
Z/(pm) corresponds to the subset of such polynomials of degree at most 0 in y and z.

We shall require that S(1) and A(1) are fields. This requirement ensures that S(m) and A(m) are
Galois rings. Note that for m′ ≥ m, there is a natural map from A(m′) to A(m), and the restriction
of this map to S(m′) is the natural map from S(m′) to S(m). The units in A(m) are the elements
whose images in A(1) are nonzero (this follows from Hensel lifting).

We fix a sequence polynomials E1, . . . , En ∈ Z[y, z] whose images in A(1) form an exceptional se-
quence. Note that for every m ≥ 1, the images of these polynomials in A(m) also form an exceptional
sequence in A(m).

Now fix an integer k ≥ 1 and define

S := S(k) and A := A(k).

Let e1, . . . , en ∈ A be the images of E1, . . . , En in A. Our ring of secrets will be S. Our goal is to
design a secret sharing protocol that can be used to share of a secret in S, where the evaluation
coordinates are e1, . . . , en, and so the shares lie in A even though the secret lies in S. Such a protocol
should provide all the usual guarantees of any secret sharing protocol, but should also enforce the
restriction that the shared secret is in S, even if the dealer is corrupt.

To do this, we will actually perform a secret sharing over another ring. Fix an integer k′ ≥ k
and define

S′ := S(k
′) and A′ := A(k′).

Let e′1, . . . , e
′
n ∈ A′ be the images of E1, . . . , En in A′. Let ϕ be the natural map from A′ to A.

Observe that S′ is a subring of ϕ−1(S). The idea is that we will do the following steps:

1. Perform a sharing of a secret in S′ with shares in A′, with respect to the evaluation coordinates
e′1, . . . , e

′
n.

2. Perform a probabilistic check that ensures that the secret lies in ϕ−1(S) with high probability.

After this, each party can locally apply ϕ to its share to obtain a sharing of a secret in S with
shares in A, with respect to the evaluation coordinates e1, . . . , en.

On the one hand, if the dealer is honest, in order to protect the privacy of the dealer’s secret,
it is essential that their secret s′ lies in S′. Of course, an honest dealer should really be starting out
with a secret in s ∈ S and then choose s′ ∈ S′ as some (arbitrary) preimage of s under ϕ. On the
other hand, if the dealer is corrupt, the protocol does not enforce the constraint that the dealer’s
secret lies in S′, but only that it lies in ϕ−1(S). In either case, after each party locally applies ϕ to
its share, we end up with a sharing of a secret in S.

42

6.2 Two special cases

We briefly sketch how the above general setting includes two important special cases.

S is a non-prime finite field: This corresponds to the setting where k = 1 and ϵ > 1. In this
case, S = Z[z]/(p,G(z)) is a finite field of cardinality q = pϵ, and A = Z[y, z]/(p,G(z), F (y, z))
is an extension field of degree over δ over Fq (and so has qδ = pϵ·δ elements). We also have
corresponding rings S′ = Z[z]/(pk′ , G(z)) and A′ = Z[y, z]/(pk

′
, G(z), F (y, z)). Note that even

though S and A are fields, S′ and A′ will not be (assuming k′ > 1).
S is of the form Z/(pk): This corresponds to setting G(z) := z, and using a polynomial of the

form F (y) ∈ Z[y] in the role of F (y, z). Then S = Z/(pk) and A = Z[y]/(pk, F (y)). We also have
corresponding rings S′ = Z/(pk′) and A′ = Z[y]/(pk′ , F (y)).

6.3 The protocol

The basic idea is this. The dealer has polynomials f1, . . . , fL ∈ A′[x]<d, where for each ℓ ∈ [L],
the corresponding secret is the constant term fℓ(0), which lies in S′. The dealer chooses a random
“blinding” polynomial g ∈ A′[x]<d also with g(0) ∈ S′, and then runs an AVSS protocol on the
polynomials f1, . . . , fL, g. After this, a random beacon is used to generate a random “challenge”

γ := (γ1, . . . , γL) ∈ (Z/(pk
′
))L.

The dealer then computes the “response” polynomial

h← g +
∑

ℓ∈[L]

γℓ · fℓ, (7)

which is also a polynomial in A′[x]<d with h(0) ∈ S′, and reliably broadcasts h. After receiving the
polynomial h and verifying that it is of the correct form (i.e., of the right degree and with constant
term in S′), each party Pj verifies that h is locally correct based on its shares by checking that (7)
holds at the evaluation coordinate e′j . The parties then run a trivial voting protocol that will ensure
that they only output their shares if at least n − 2t ≥ d parties have successfully performed this
local check. This ensures that (7) holds. We then argue that if fℓ∗(0) /∈ ϕ−1(S) for some ℓ∗ ∈ [L],
then the probability that h(0) ∈ S′ for randomly chosen γ is at most pk−k′−1. This implies that
except with probability pk−k′−1, we can be sure that the secret fℓ(0) lies in ϕ−1(S) all ℓ ∈ [L].

Our protocol, which we callΠravss1, is presented in Fig. 12. It makes use of a repetition parameter
R, so that the above probabilistic check is actually performed R times. It makes use of an (n, d, L+
R)-AVSS subprotocol over A′ with respect to (e′1, . . . , e

′
n). In the description of Πravss1, we invoke

this as an ideal functionality Favss. Protocol Πravss1 also makes use of

– A random beacon whose output space is defined to be
{ {

γ
(r)
ℓ

}
ℓ∈[L],r∈[R]

: γ
(r)
ℓ ∈ Z/(pk

′
)
}
,

which is invoked as an ideal functionality FBeacon;
– A reliable broadcast subprotocol, which is invoked as an ideal functionality FReliableBroadcast.

As we shall argue below, when the protocol produces an output, the shared secrets must lie in
ϕ−1(S) (with high probability). As mentioned above, each party can then locally apply ϕ to its
shares to obtain sharings of secrets in S.

43

Πravss1

// Dealer D with input f1, . . . , fL ∈ A′[x]<d with constant terms in S′

for all r ∈ [R]: choose random g(r) ∈ A′[x]<d with constant terms in S′

invoke operation Input({fℓ}ℓ∈[L], {g(r)}r∈[R]) on Favss

wait for FBeacon to deliver a message Output({γ(r)
ℓ }ℓ∈[L],r∈[R])

for all r ∈ [R]: compute h(r) ← g(r) +
∑

ℓ∈[L] γ
(r)
ℓ · fℓ ∈ A′[x]<d

invoke operation Input({h(r)}r∈[R]) on FReliableBroadcast

// Receiving party Pj

wait for Favss to deliver a message Output({vℓ,j}ℓ∈[L], {w(r)
j }r∈[R])

invoke operation Input(init) on FBeacon

wait for FBeacon to deliver a message Output({γ(r)
ℓ }ℓ∈[L],r∈[R])

wait for FReliableBroadcast to deliver a message Output({h(r)}r∈[R])
if for all r ∈ [R]:

h(r) ∈ A′[x]<d with constant term in S′ and

h(r)(e′j) = w
(r)
j +

∑
ℓ∈[L] γ

(r)
ℓ · vℓ,j

then
send a “vote” message to P1, . . . , Pn

wait for “vote” messages from n− t distinct parties
output {vℓ,j}ℓ∈[L]

Fig. 12. AVSS protocol for a dealer to provably enter values in ϕ−1(S)

6.4 Security analysis

To analyze the security of Πravss1, we begin with the following simple lemma.

Lemma 6.1. Let p be a prime and let s be a positive integer. Let a1, . . . , aL be integers, not all
zero mod ps. Let r be the largest positive integer such that pr divides aℓ for ℓ ∈ [L], so that r < s.
Let b be an arbitrary integer. Let N be the number of integers x1, . . . , xL in the range [0, ps) that
satisfy

a1 · x1 + · · · aL · xL + b ≡ 0 (mod ps). (8)

Then N/pL·s ≤ pr−s.

Proof. Without loss of generality, assume that pr | a1 but pr+1 ∤ a1. We may assume pr | b, as
otherwise (8) has no solutions. In this case, (8) holds iff

(a1/p
r) · x1 + · · · (aL/pr) · xL + (b/pr) ≡ 0 (mod ps−r).

Moreover, since a1/p
r is not divisible by p, for every choice of x2, . . . , xL, there is a unique choice

of x1 mod ps−r, and so pr choices for x1 in the interval [0, ps). The lemma follows. ⊓⊔

This lemma says that if x1, . . . , xL are randomly chosen from the interval [0, ps), then the
probability that (8) holds is at most pr−s.

Theorem 6.1 (Security of Πravss1). Assume p(k−k′−1)·R is negligible. Then we have:

(i) Πravss1 securely realizes Fravss in the (Favss,FBeacon,FReliableBroadcast)-hybrid model.

44

Fravss

Input(f1, . . . , fL): this operation is invoked once by the dealerD, who inputs polynomials f1, . . . , fL ∈ A′[x]<d

S′ to Fravss.
If D is honest, the constant terms are required to lie in S′; however, if D corrupt, the constant terms are
only required to lie in ϕ−1(S).
In response, Fravss sends the message NotifyInput() to the ideal-world adversary.

RequestOutput(j): after the input has been received, this operation may be invoked by the ideal-world
adversary, who specifies j ∈ [n]. In response, Fravss sends to Pj the message

Output
({

fℓ(e
′
j)

}
ℓ∈[L]

)
.

Fig. 13. The restricted AVSS Ideal Functionality (parameterized by n, d, L, R, D, p, k, k′, F , G, (E1, . . . , En), which
define S, A, S′, A′, ϕ, and e′1, . . . , e

′
n)

(ii) If Πravss1 is instantiated with concrete protocols for Favss, FBeacon, and FReliableBroadcast that
are secure (i.e., securely realize the corresponding functionality) and complete (i.e., satisfy the
corresponding completeness property), then the resulting concrete protocol

(a) securely realizes Fravss, and

(b) satisfies the AVSS completeness property.

Proof. We start with statement (i) of the theorem. To that end, we need to show that there is
a simulator that interacts with Fravss in the ideal world such that no environment can effectively
distinguish the ideal world from the hybrid world.

If the dealer is honest, the proof reduces to showing that the values h(r) and w
(r)
j for j ∈ C and

r ∈ [R] do not leak any extra information. This is a standard argument, based on the “random
padding” supplied by the polynomials g(r). In more detail, the ideal functionality Fravss gives the
simulator the values vℓ,j for ℓ ∈ [L] and j ∈ C. For each r ∈ [r], the simulator then chooses
h(r) ∈ A′[x]<d with constant term in S′ at random and then computes

w
(r)
j ← h(r)(e′j)−

∑

ℓ∈[L]

γ
(r)
ℓ · vℓ,j (for j ∈ C).

Note that the simulator can also generate the random beacon values γ
(r)
ℓ in advance of this com-

putation.

Now consider case is that when the dealer is corrupt. The dealer must submit polynomials

{fℓ}ℓ∈[L] and {g(r)}r∈[R] of degree less than d to Favss before the random beacon values γ
(r)
ℓ are

revealed. Let sℓ denote the constant term of fℓ for ℓ ∈ [L] and let s(r) denote the constant term
of g(r) for r ∈ [R]. If and when an honest party produces an output, the simulator needs to
submit {fℓ}ℓ∈[L] to the ideal functionality Fravss, and so the simulation will fail if some sℓ is not
in ϕ−1(S). To bound the probability that this simulation fails, suppose that sℓ∗ /∈ ϕ−1(S) for some
particular ℓ∗ ∈ [L]. To finish the proof of the theorem, it will suffice to show that for randomly

chosen {γ(r)ℓ }ℓ∈[L],r∈[R] the probability that any honest party ever produces an output is at most

p(k−k′−1)·R.

Suppose that some honest party produces an output. The honest party that produced an output
received n− t “vote” messages, which means that at least n−2t ≥ d honest parties performed their

45

local checks and these checks passed. This implies that each h(r) has the correct form (is of degree
less than d with constant term in S′), and that

h(r) = g(r) +
∑

ℓ∈[L]

γ
(r)
ℓ · fℓ (for all r ∈ [R]). (9)

This implies that

s(r) +
∑

ℓ∈[L]

γ
(r)
ℓ · sℓ ∈ S′ (for all r ∈ [R]). (10)

So it suffices to show that (10) holds with probability at most p(k−k′−1)·R.
For ℓ ∈ [L], we can express sℓ uniquely as the image in A′ of a polynomial in Z[y, z] of the form

δ−1∑

i=0

ϵ−1∑

j=0

ai,j,ℓ · yi · zj ,

where each ai,j,ℓ is an integer in the range [0, pk
′
). The assumption that sℓ∗ /∈ ϕ−1(S) means that

for some i∗ ≥ 1 and j∗ ≥ 0, we have ai∗,j∗,ℓ∗ ̸≡ 0 (mod pk). For r ∈ [R], we can similar express s(r)

uniquely as the image in A′ of a polynomial in Z[y, z] of the form

δ−1∑

i=0

ϵ−1∑

j=0

bi,j · yi · zj ,

For ℓ ∈ [L] and r ∈ [R], we can view each γ
(r)
ℓ as the image in Z/(pk′) of a randomly chosen integer

x
(r)
ℓ in the range [0, pk

′
). But then by (10), we must have

bi∗,j∗ +
∑

ℓ∈[L]

ai∗,j∗,ℓ · x(r)ℓ ≡ 0 (mod pk
′
) (for all r ∈ [R]). (11)

But by Lemma 6.1, the congruence (11) holds with probability at most p(k−k′−1)·R.

That proves statement (i) of the theorem. Statement (ii)(a) is a direct consequence of state-
ment (i) and the UC composition theorem. Statement (ii)(b) follows fairly easily from the security
and completeness properties of the concrete subprotocols, and the logic of Πravss1. The argument
in the case where the dealer is honest is entirely straightforward. The argument in the case where
the dealer is corrupt hinges on the following observation. In the hybrid version of Πravvs1, as we
argued above, if one honest party produces an output, then at least n− 2t ≥ d honest parties must
have performed their local checks and these checks passed, and this implies that each h(r) has the
correct form and (9) must hold. This means that when any honest party performs its local check,
that check will pass and it will broadcast a “vote” message. Since this property always holds in the
the hybrid version of Πravvs1, it must hold with overwhelming probability in the concrete version
of Πravvs1 as well. Therefore, in the concrete version of Πravvs1, if one honest party produces an
output, then with overwhelming probability, all parties will eventually do so. ⊓⊔

After the proof of Theorem 5.1, we remarked that in some instantiations, we cannot justify the
use of a random beacon that generates a short seed that is then stretched using a pseudorandom
generator (as discussed in Section 3.1.2). That limitation does not apply here. Indeed, as discussed

46

in Section 3.1.2, to do this, it suffices that the failure event in Theorem 6.1 can be efficiently detected
as a function of the output of G and data that is available to the adversary prior to revealing the
beacon. The reader can verify that this is the case.

Note that the completeness argument at the end of the above proof would have been simpler if
instead of the trivial one-round voting protocol, we used the one-sided voting protocolΠOneSidedVote,
which has two-rounds. Note also that if we instantiate Favss with our protocol Πavss1, which already
performs a one-sided vote, the resulting protocol could be optimized by combining these two voting
steps into just a single one-sided vote.

6.5 Communication complexity

We calculate the communication complexity of this protocol. We assume the AVSS protocol in
Section 5 protocol is used for sharing over A′ and we consider the amortized complexity on the
“happy path” — but we could use any AVSS protocol that achieves linear amortized communication
complexity of the “happy path”. In this setting, the communication complexity (amortized, “happy
path”) is

O(n · log|A′|).
The settings of the parameters R and k′ affect both the communication complexity and the failure
bound.

6.5.1 Setting k′ := k. At one extreme, we could set k′ := k. In this case, to achieve σ bits
of security, we need to set the repetition parameter R := ⌈σ · logp 2⌉. The main advantage of
this parameter setting is that A′ = A, and the amortized communication complexity remains the
same as in Section 5.3. The main disadvantage of this setting is that the amortized computational
complexity blows up by a factor of R.

6.5.2 Setting R := 1. At another extreme, we could set R := 1. In this case, to achieve σ bits
of security, we need to set k′ := k− 1+ ⌈σ · logp 2⌉. Assuming S has degree ϵ over Z/(pk) and A has
degree δ over S the complexity (amortized, “happy path”) is

O(n · δ · (log|S|+ ϵ · σ)).

Finite Field Case. Suppose A is a field extension of degree δ over the finite field S = Fq, where
q = pϵ, δ = O(logq n), and k = 1. Then the communication complexity (amortized, “happy path”)
is

O(n · logq n · (log|S|+ ϵ · σ)),
which is

O(n · log n · (1 + σ/ log p)).

Galois Ring Case. Suppose S = Z/(pk) and A is of degree δ = O(logp n) over S, so ϵ = 1. Then the
communication complexity (amortized, “happy path”) is

O(n · logp n · (log|S|+ σ)),

which is
O(n · log n · (k + σ/ log p)).

47

As a special case, suppose p = 2 and k is large enough so that 2−k is negligible. Then by setting
k′ := 2k, we obtain k+1 bits of security, while both the amortized communication and computational
complexity increase by just a small constant factor over the basic AVSS protocol.

7 Random oracle implementations

In this section, we present a variant of our new AVSS protocol Πavss1 (from Section 5), as well a
variant of the AVSS protocol Πravss1 (from Section 6, which restricts the dealer’s secrets). These
variants do not need a random beacon; rather, they require that we model a hash function as a ran-
dom oracle in the security analysis. Besides eliminating the need for a random beacon subprotocol,
these variants require significantly fewer rounds of communication.

7.1 A random oracle version of Πavss1

At a very high level, protocol Πavss1 in Section 5 is based on the classical commit-challenge-response
paradigm, which we can view as an interactive game between the dealer and a challenger:

1. The dealer sends a vector of messages m = (m1, . . . ,mn) to the challenger.
2. The challenger generates a random challenge ω ∈ Ω and sends this to the dealer.
3. The dealer responds with a message m′.

In Πavss1:

– the messages m1, . . . ,mn encode the shares of the dealer’s input polynomials, which are dis-
tributed using a secure message distribution subprotocol,

– the challenge is generated using a distributed random beacon subprotocol, and
– the response m′ encodes the dealer’s “response” polynomials, which are broadcast using a

reliable broadcast subprotocol.

The main idea is to replace the distributed random beacon subprotocol by a hash function that
is modeled as a random oracle. This way, the dealer can interact exclusively with the random oracle
to generate a 3-move “conversation”, consisting of (m, ω,m′), and then disseminate this conversa-
tion to all parties in a way that satisfies the privacy, correctness, and completeness properties of
secure message distribution and reliable broadcast, and that includes support for the “forwarding
mechanism” of secure message distribution.

7.1.1 A subprotocol for disseminating 3-move conversations. We show how to carry out
this idea by sketching a protocol we call ΠDst3move.

The dealer will first build a Merkle tree as shown in Fig. 14. It uses the same Merkle tree
structure, rooted at r, used in our secure message distribution protocol ΠSecMsgDst in Section 4.3 to
encrypt and encode m = (m1, . . . ,mn), and the same Merkle tree structure, rooted at r′, used in
the compact reliable broadcast protocol ΠCompactBroadcast in Section 3.2.2 to encode m′. In addition,
the dealer creates a new Merkle tree with root r̂′ whose children are r and r′. We assume that the
hash that outputs the root r also outputs the challenge ω.

We assume that all hash functions queries are properly domain separated, meaning that we
always include an input to the hash that identifies the individual instance of the protocol, including
the identity of the dealer. We also assume that for a given protocol instance, different uses of the
hash function are further domain separated. In particular, we assume that the hashes used to

48

– derive (r, ω),
– derive r̂′,
– compute H in ΠSecMsgDst, and
– create all other nodes of Merkle trees,

are domain separated from each other. This domain separation greatly simplifies the analysis in
the random oracle model.

<latexit sha1_base64="z4a0Dml+uGsE/JF5T844sQ+/34E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A3seM+w==</latexit>r

<latexit sha1_base64="K70Y1kmUobCT8LE15aI4gNrgLNc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6UKe9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmudV77Lq3l9Uajd5HEU4gmM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvLTj5zCH8gfP5Az9IjSw=</latexit>

r0

<latexit sha1_base64="iiG0FNXRhRaKyRj3ytovIpJM9nE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSuzukmOnJaa9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZvRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/9TKgkRa7YfFGYSoIxmT5P+kJzhnJsCWVa2FsJG1JNGdqISjYEb/HlZdI8r3qXVff+olK7yeMowhEcwxl4cAU1uIM6NICBhGd4hTfn0Xlx3p2PeWvByWcO4Q+czx8L4o/5</latexit>

r̂0

<latexit sha1_base64="n19bfNoDQW8Elhp2yYBY6nOFp28=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwQyjZ8=</latexit>r1
<latexit sha1_base64="dmU63J5Hx5uIjCl1thSRtJfgCP8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1busuvcXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAFto2g</latexit>r2

<latexit sha1_base64="YeKThHDj6zIEEFZ6Tc8RkxklSgs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB91X/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq7v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2Cmjdw=</latexit>rn

<latexit sha1_base64="akPdb09AXKql6bhf/BB7KX07hhs=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9Rj04jGCeUCyhNlJbzJmHsvMrBBC/sGLB0W8+j/e/BsnyR40saChqOqmuytOOTM2CL69ldW19Y3NwlZxe2d3b790cNgwKtMU61RxpVsxMciZxLpllmMr1UhEzLEZD2+nfvMJtWFKPthRipEgfckSRol1UqOjBPZJt1QOKsEM/jIJc1KGHLVu6avTUzQTKC3lxJh2GKQ2GhNtGeU4KXYygymhQ9LHtqOSCDTReHbtxD91Ss9PlHYlrT9Tf0+MiTBmJGLXKYgdmEVvKv7ntTObXEdjJtPMoqTzRUnGfav86et+j2mklo8cIVQzd6tPB0QTal1ARRdCuPjyMmmcV8LLSnB/Ua7e5HEU4BhO4AxCuIIq3EEN6kDhEZ7hFd485b14797HvHXFy2eO4A+8zx+R148g</latexit>!

<latexit sha1_base64="/3mSQThBn2tgS3cg5A8IDRcXBFg=">AAACCXicbVC7TsMwFHV4lvIKMLJYVEhMUYJ4jRUsjEWiD6mpKse5ba06TmQ7SFWUlYVfYWEAIVb+gI2/wWkzQMuRLB+dc6/uvSdIOFPadb+tpeWV1bX1ykZ1c2t7Z9fe22+pOJUUmjTmsewERAFnApqaaQ6dRAKJAg7tYHxT+O0HkIrF4l5PEuhFZCjYgFGijdS3sZ+KEGQgCYXMH6mk+D3nnIk872c+zvt2zXXcKfAi8UpSQyUaffvLD2OaRiA05USprucmupcRqRnlkFf9VIGZMiZD6BoqSASql00vyfGxUUI8iKV5QuOp+rsjI5FSkygwlRHRIzXvFeJ/XjfVg6texkSSahB0NmiQcqxjXMSCQyaBaj4xhFDJzK6YjohJRZvwqiYEb/7kRdI6dbwLx707q9Wvyzgq6BAdoRPkoUtUR7eogZqIokf0jF7Rm/VkvVjv1sesdMkqew7QH1ifP8+PmmU=</latexit>| {z }

<latexit sha1_base64="FFTg1MEO+I5dOLQghT01hHzGDh0=">AAACB3icbVBNS8NAEN3Ur1q/oh4FWSyCp5KIqMeiF48VbC00IWy203bpZhN2N0IJuXnxr3jxoIhX/4I3/42bNgdtfbDs470ZZuaFCWdKO863VVlaXlldq67XNja3tnfs3b2OilNJoU1jHstuSBRwJqCtmebQTSSQKORwH46vC//+AaRisbjTkwT8iAwFGzBKtJEC+9BLRR9kKAmFzBuppPhdJvI8yDycB3bdaThT4EXilqSOSrQC+8vrxzSNQGjKiVI910m0nxGpGeWQ17xUgZkxJkPoGSpIBMrPpnfk+NgofTyIpXlC46n6uyMjkVKTKDSVEdEjNe8V4n9eL9WDSz9jIkk1CDobNEg51jEuQsF9JoFqPjGEUMnMrpiOiMlEm+hqJgR3/uRF0jltuOcN5/as3rwq46iiA3SETpCLLlAT3aAWaiOKHtEzekVv1pP1Yr1bH7PSilX27KM/sD5/ANpzme4=</latexit>| {z }

<latexit sha1_base64="Vnj9lk6P8VeYaNUHErf/bKAdCZQ=">AAACGHicbVC7SgNBFJ2NrxhfUUubwSgoSNxNoTZC0MYyglEhCcvs7KwZMo9l5q4QlnyGjb9iY6GIbTr/xsmjUOOBYQ7n3Mu990Sp4BZ8/8srzM0vLC4Vl0srq2vrG+XNrVurM0NZk2qhzX1ELBNcsSZwEOw+NYzISLC7qHc58u8embFcqxvop6wjyYPiCacEnBSWj5miOmYxdr/pp+DYXlsS6EZJLgfnBzIMjtoi1mCPZKgO98Jyxa/6Y+BZEkxJBU3RCMvDdqxpJpkCKoi1rcBPoZMTA5wKNii1M8tSQnvkgbUcVUQy28nHhw3wvlNinGjjngI8Vn925ERa25eRqxztbP96I/E/r5VBctbJuUozcIdPBiWZwKDxKCUcc8MoiL4jhBrudsW0Swyh4LIsuRCCvyfPkttaNTip+te1Sv1iGkcR7aBddIACdIrq6Ao1UBNR9IRe0Bt69569V+/D+5yUFrxpzzb6BW/4Dagyn34=</latexit>

encoded encrypted m = (m1, . . . , mn)

<latexit sha1_base64="663ctETurFIdIbiMb8q03CnwnrA=">AAAB83icbVDLSgNBEJz1GeMr6tHLYCJ6Crs5qMegF48RzAOSJczO9iZD5rHMzAoh5De8eFDEqz/jzb9xkuxBEwsaiqpuuruilDNjff/bW1vf2NzaLuwUd/f2Dw5LR8ctozJNoUkVV7oTEQOcSWhaZjl0Ug1ERBza0ehu5refQBum5KMdpxAKMpAsYZRYJ/VAUhVDjCviotIvlf2qPwdeJUFOyihHo1/66sWKZgKkpZwY0w381IYToi2jHKbFXmYgJXREBtB1VBIBJpzMb57ic6fEOFHalbR4rv6emBBhzFhErlMQOzTL3kz8z+tmNrkJJ0ymmXXfLRYlGcdW4VkAOGYaqOVjRwjVzN2K6ZBoQq2LqehCCJZfXiWtWjW4qvoPtXL9No+jgE7RGbpEAbpGdXSPGqiJKErRM3pFb17mvXjv3seidc3LZ07QH3ifP6TLkMM=</latexit>

encoded m0

<latexit sha1_base64="0wnPUQt89aJI4JVFunW8vuJm37E=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eKxgP6ANZbPZtGs3u2F3IpTQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxzdTv32E9OGK/mA45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgUa/cpXL1I0S5hEKogxXd9LMciJRk4Fm5R7mWEpoSMyYF1LJUmYCfLZtRP31CqRGyttS6I7U39P5CQxZpyEtjMhODSL3lT8z+tmGF8HOZdphkzS+aI4Ey4qd/q6G3HNKIqxJYRqbm916ZBoQtEGVLYh+IsvL5PWec2/rHn3F9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNUc6L8+58zFtXnGLmCP7A+fwBr/2PNA==</latexit>· · ·

<latexit sha1_base64="0wnPUQt89aJI4JVFunW8vuJm37E=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eKxgP6ANZbPZtGs3u2F3IpTQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxzdTv32E9OGK/mA45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgUa/cpXL1I0S5hEKogxXd9LMciJRk4Fm5R7mWEpoSMyYF1LJUmYCfLZtRP31CqRGyttS6I7U39P5CQxZpyEtjMhODSL3lT8z+tmGF8HOZdphkzS+aI4Ey4qd/q6G3HNKIqxJYRqbm916ZBoQtEGVLYh+IsvL5PWec2/rHn3F9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNUc6L8+58zFtXnGLmCP7A+fwBr/2PNA==</latexit>· · ·

Fig. 14. Merkle tree structure for a 3-move conversation

Next, the dealer initiates a subprotocol to distribute each mj to each Pj as in ΠSecMsgDst and
broadcast m′ to all parties as in ΠCompactBroadcast. This subprotocol has the same send-echo-vote
structure as in each of these protocols. However, in this subprotocol, all echoing/voting is done
on the “global” root r̂′ of the entire structure, so that just one round of send-echo-vote suffices to
distribute the mj ’s and to broadcast m′. In particular, the message sent by the dealer to a party
Pj will include r̂′, r, and r′, as well as

– ri and the jth validated path in the Merkle tree rooted at ri for all i ∈ [n], and
– the jth validated path in the Merkle tree rooted at r′.

In response, each party sends echo messages, where each echo message contains the root r̂′, along
with

– the validated path starting at r it would normally send in ΠSecMsgDst, and
– the validated path starting at r′ it would normally send in ΠCompactBroadcast.

The forwarding mechanism is implemented in precisely the same way as in ΠSecMsgDst.
Note that in this construction, the dealer explicitly includes the hash values r and r̂′ in the

send messages, and the receiver verifies that these are consistent with r1, . . . , rn and r′, rather than
just computing r and r̂′. This simplifies the analysis in the random oracle model, as we can assume
that when the dealer is corrupt, it must have already invoked the random oracle to obtain r and r̂′

explicitly before sending to an honest party (as otherwise that party will almost surely ignore the
message).

In order to analyze the security of ΠDst3move, we rely on the fact that for a corrupt dealer, we
have the following extractability property: by observing the random oracle queries of the adversary,

49

a simulator can effectively determine the committed input m = (m1, . . . ,mn) before the random
challenge ω is generated — note that some of the mj ’s may be ⊥ if the adversary has not made the
necessary random oracle queries. We also rely on the fact that for an honest dealer, we have the
following equivocability property: a simulator is free to program the random oracle (the one that
outputs the random challenge) so that it outputs a given random challenge ω. To justify this, we
have to ensure that the input to this hash has high entropy and so that adversary is unlikely to
have queried the random oracle previously at this point; however, this will be the case, since in the
protocol, the input to this hash query (the one that outputs (r, ω)) is ultimately derived from the
outputs of the H hash function in ΠSecMsgDst, and these outputs are essentially random.

We also observe that an adversary can carry out a “grinding” attack. Indeed, an adversary can
effectively:

– try many different message vectors, where for each such message vector m, it builds a Merkle
tree and derives the corresponding challenge ω, creating a partial conversation (m, ω),

– pick one such partial conversation (m, ω) that it likes,

– extend (m, ω) with a message m′ of its choice to obtain a full conversation (m, ω,m′), and
finally

– disseminate the full conversation (m, ω,m′) to all parties.

We can characterize the security of protocol ΠDst3move in terms of an ideal functionality
FDst3move. To this functionality, the dealer submits a message vector m = (m1, . . . ,mn) and obtains
a random challenge ω, creating the partial conversation (m, ω). After this, the dealer submits a
message m′, creating the full conversation (m, ω,m′). This full conversation is then disseminated
to all parties following the semantics of FSecMsgDst and FReliableBroadcast — in particular, for an
honest dealer, the only information leaked to the ideal-world adversary is the challenge ω, the final
message m′, and (implicitly) the messages mj belonging to corrupt parties Pj .

To model the above “grinding” attack, the functionality also allows a corrupt dealer to repeat-
edly submit a message vector m, obtaining a challenge ω and creating the partial conversation
(m, ω). We call one such operation a grind on FDst5move. At some point, the corrupt dealer may
choose a partial extended conversation (m, ω) and submit a message m′, creating the full conversa-
tion (m, ω,m′), which is then disseminated to all parties following the semantics of FSecMsgDst and
FReliableBroadcast.

We leave it to the reader to verify that ΠDst3move securely realizes the ideal functionality
FDst3move. Moreover, in the security reduction, the number of grinds on FDst3move made by the
simulator is bounded by the number of random oracle queries made by the real-world adversary.

We also leave it to the reader to verify that ΠDst3move enjoys completeness properties analogous
to those of ΠSecMsgDst and ΠReliableBroadcast.

7.1.2 An AVSS protocol. To build an AVSS protocol using ΠDst3move, we use ΠDst3move as
a drop-in replacement in Πavss1 for FSecMsgDst, FBeacon, and FReliableBroadcast. The only remaining
steps of Πavss1 are local computations and FOneSidedVote. The result is a protocol we denote by
Πavss2.

We leave it to the reader to verify the following. Notation is as in Theorem 5.1.

Theorem 7.1 (Security of Πavss2). Assume Q · 2n · χ(A,B, Θ)R is negligible, where Q is the
number of grinds on FDst3move Then we have:

50

(i) Πavss2 securely realizes Favss in the (FDst3move,FOneSidedVote)-hybrid model.
(ii) If Πavss2 is instantiated with concrete protocols for FDst3move and FOneSidedVote, that are se-

cure (i.e., securely realize the corresponding functionality) and complete (i.e., satisfy the cor-
responding completeness property), then the resulting concrete protocol
(a) securely realizes Favss, and
(b) satisfies the AVSS completeness property.

The communication complexity of Πavss2 is essentially the same as that of Πavss1. However, in
terms of rounds of communication, Πavss2 is significantly better. Indeed (on the happy path), if we
instantiate Πavss2 with ΠDst3Move and ΠOneSidedVote, we see that it needs 3 rounds for ΠDst3move

and 2 rounds for ΠOneSidedVote, for a total of just 5 rounds. In contrast, if we instantiate Πavss1

with ΠSecMsgDst, ΠCompactBroadcast, ΠOneSidedVote, and any 1-round protocol that realizes FBeacon,
we that it needs 3 rounds for ΠSecMsgDst, 1 round for the beacon, 3 rounds for ΠCompactBroadcast,
and 2 rounds for ΠOneSidedVote, for a total of 9 rounds.

We speculate that Πavss2 can be further optimized by folding the one-sided voting subprotocol
into ΠDst3Move in such a way that the total number of rounds is 4 rather than 5; however, we have
not carried out the associated full design and analysis.

We also speculate that Πavss2 can be implemented in such a way that it is secure against
adaptive corruptions in the random oracle model. To achieve this, it should be sufficient to use an
equivocable symmetric encryption scheme as discussed in Section 4.3. However, we have not carried
out the associated full design and analysis.

7.2 A random oracle version of Πravss1

Let us assume that we instantiate Favss in protocol Πravss1 with Πavss1. The resulting protocol then
has the following structure of a 5-move interactive game between the dealer and a challenger:

1. The dealer sends a vector of messages m = (m1, . . . ,mn) to the challenger.
2. The challenger generates a random challenge ω ∈ Ω and sends this to the dealer.
3. The dealer sends a message m′ to the challenger.
4. The challenger generates a random challenge ω′ ∈ Ω′ and sends this to the dealer.
5. The dealer responds with a message m′′.

Here, moves 1–3 are as in Πavss1, while moves 4 and 5 correspond to the challenge-response phase
of Πravss1. One might hope to reduce these 5 moves to just 3 moves, but we do not see a way to do
that. Indeed, as remarked in Section 5.1.1, a corrupt dealer only commits to its input polynomials
after move 3, and in order for the security proof of Theorem 6.1 to go through, we cannot afford
to reveal the challenge ω′ until that occurs.

As above in Section 7.1, the main idea is to replace the distributed random beacon subprotocols
by hash functions that are modeled as random oracles — the dealer can interact exclusively with
the random oracle to generate a 5-move “conversation”, consisting of (m, ω,m′, ω′′,m′′), and then
disseminate this conversation to all parties. We sketch here a protocol ΠDst5move that does exactly
this.

The dealer will first build a Merkle tree as shown in Fig. 15. The structure is the same as in
Fig. 14, except that we have added a Merkle subtree, rooted at r′′, with the same structure as
the compact reliable broadcast protocol ΠCompactBroadcast in Section 3.2.2 to encode m′′, and a
“global” root r̂′′ with r̂′ and r′′ as children. We assume that the hash that outputs the root r̂′ also

51

outputs the challenge ω′. We also assume all hashes are properly domain separated as discussed
above Section 7.1, and in particular, the hashes used to derive (r, ω), (r̂′, ω′), and r̂′′ are all domain
separated from each other as well as from other use cases.

<latexit sha1_base64="z4a0Dml+uGsE/JF5T844sQ+/34E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A3seM+w==</latexit>r

<latexit sha1_base64="K70Y1kmUobCT8LE15aI4gNrgLNc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6UKe9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmudV77Lq3l9Uajd5HEU4gmM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvLTj5zCH8gfP5Az9IjSw=</latexit>

r0

<latexit sha1_base64="iiG0FNXRhRaKyRj3ytovIpJM9nE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94DjhfkQHSoSCUbRSuzukmOnJaa9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZvRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/9TKgkRa7YfFGYSoIxmT5P+kJzhnJsCWVa2FsJG1JNGdqISjYEb/HlZdI8r3qXVff+olK7yeMowhEcwxl4cAU1uIM6NICBhGd4hTfn0Xlx3p2PeWvByWcO4Q+czx8L4o/5</latexit>

r̂0

<latexit sha1_base64="n19bfNoDQW8Elhp2yYBY6nOFp28=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwQyjZ8=</latexit>r1
<latexit sha1_base64="dmU63J5Hx5uIjCl1thSRtJfgCP8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1busuvcXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAFto2g</latexit>r2

<latexit sha1_base64="YeKThHDj6zIEEFZ6Tc8RkxklSgs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB91X/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq7v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2Cmjdw=</latexit>rn

<latexit sha1_base64="akPdb09AXKql6bhf/BB7KX07hhs=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhA8hV0R9Rj04jGCeUCyhNlJbzJmHsvMrBBC/sGLB0W8+j/e/BsnyR40saChqOqmuytOOTM2CL69ldW19Y3NwlZxe2d3b790cNgwKtMU61RxpVsxMciZxLpllmMr1UhEzLEZD2+nfvMJtWFKPthRipEgfckSRol1UqOjBPZJt1QOKsEM/jIJc1KGHLVu6avTUzQTKC3lxJh2GKQ2GhNtGeU4KXYygymhQ9LHtqOSCDTReHbtxD91Ss9PlHYlrT9Tf0+MiTBmJGLXKYgdmEVvKv7ntTObXEdjJtPMoqTzRUnGfav86et+j2mklo8cIVQzd6tPB0QTal1ARRdCuPjyMmmcV8LLSnB/Ua7e5HEU4BhO4AxCuIIq3EEN6kDhEZ7hFd485b14797HvHXFy2eO4A+8zx+R148g</latexit>!

<latexit sha1_base64="/3mSQThBn2tgS3cg5A8IDRcXBFg=">AAACCXicbVC7TsMwFHV4lvIKMLJYVEhMUYJ4jRUsjEWiD6mpKse5ba06TmQ7SFWUlYVfYWEAIVb+gI2/wWkzQMuRLB+dc6/uvSdIOFPadb+tpeWV1bX1ykZ1c2t7Z9fe22+pOJUUmjTmsewERAFnApqaaQ6dRAKJAg7tYHxT+O0HkIrF4l5PEuhFZCjYgFGijdS3sZ+KEGQgCYXMH6mk+D3nnIk872c+zvt2zXXcKfAi8UpSQyUaffvLD2OaRiA05USprucmupcRqRnlkFf9VIGZMiZD6BoqSASql00vyfGxUUI8iKV5QuOp+rsjI5FSkygwlRHRIzXvFeJ/XjfVg6texkSSahB0NmiQcqxjXMSCQyaBaj4xhFDJzK6YjohJRZvwqiYEb/7kRdI6dbwLx707q9Wvyzgq6BAdoRPkoUtUR7eogZqIokf0jF7Rm/VkvVjv1sesdMkqew7QH1ifP8+PmmU=</latexit>| {z }

<latexit sha1_base64="FFTg1MEO+I5dOLQghT01hHzGDh0=">AAACB3icbVBNS8NAEN3Ur1q/oh4FWSyCp5KIqMeiF48VbC00IWy203bpZhN2N0IJuXnxr3jxoIhX/4I3/42bNgdtfbDs470ZZuaFCWdKO863VVlaXlldq67XNja3tnfs3b2OilNJoU1jHstuSBRwJqCtmebQTSSQKORwH46vC//+AaRisbjTkwT8iAwFGzBKtJEC+9BLRR9kKAmFzBuppPhdJvI8yDycB3bdaThT4EXilqSOSrQC+8vrxzSNQGjKiVI910m0nxGpGeWQ17xUgZkxJkPoGSpIBMrPpnfk+NgofTyIpXlC46n6uyMjkVKTKDSVEdEjNe8V4n9eL9WDSz9jIkk1CDobNEg51jEuQsF9JoFqPjGEUMnMrpiOiMlEm+hqJgR3/uRF0jltuOcN5/as3rwq46iiA3SETpCLLlAT3aAWaiOKHtEzekVv1pP1Yr1bH7PSilX27KM/sD5/ANpzme4=</latexit>| {z }

<latexit sha1_base64="Vnj9lk6P8VeYaNUHErf/bKAdCZQ=">AAACGHicbVC7SgNBFJ2NrxhfUUubwSgoSNxNoTZC0MYyglEhCcvs7KwZMo9l5q4QlnyGjb9iY6GIbTr/xsmjUOOBYQ7n3Mu990Sp4BZ8/8srzM0vLC4Vl0srq2vrG+XNrVurM0NZk2qhzX1ELBNcsSZwEOw+NYzISLC7qHc58u8embFcqxvop6wjyYPiCacEnBSWj5miOmYxdr/pp+DYXlsS6EZJLgfnBzIMjtoi1mCPZKgO98Jyxa/6Y+BZEkxJBU3RCMvDdqxpJpkCKoi1rcBPoZMTA5wKNii1M8tSQnvkgbUcVUQy28nHhw3wvlNinGjjngI8Vn925ERa25eRqxztbP96I/E/r5VBctbJuUozcIdPBiWZwKDxKCUcc8MoiL4jhBrudsW0Swyh4LIsuRCCvyfPkttaNTip+te1Sv1iGkcR7aBddIACdIrq6Ao1UBNR9IRe0Bt69569V+/D+5yUFrxpzzb6BW/4Dagyn34=</latexit>

encoded encrypted m = (m1, . . . , mn)

<latexit sha1_base64="663ctETurFIdIbiMb8q03CnwnrA=">AAAB83icbVDLSgNBEJz1GeMr6tHLYCJ6Crs5qMegF48RzAOSJczO9iZD5rHMzAoh5De8eFDEqz/jzb9xkuxBEwsaiqpuuruilDNjff/bW1vf2NzaLuwUd/f2Dw5LR8ctozJNoUkVV7oTEQOcSWhaZjl0Ug1ERBza0ehu5refQBum5KMdpxAKMpAsYZRYJ/VAUhVDjCviotIvlf2qPwdeJUFOyihHo1/66sWKZgKkpZwY0w381IYToi2jHKbFXmYgJXREBtB1VBIBJpzMb57ic6fEOFHalbR4rv6emBBhzFhErlMQOzTL3kz8z+tmNrkJJ0ymmXXfLRYlGcdW4VkAOGYaqOVjRwjVzN2K6ZBoQq2LqehCCJZfXiWtWjW4qvoPtXL9No+jgE7RGbpEAbpGdXSPGqiJKErRM3pFb17mvXjv3seidc3LZ07QH3ifP6TLkMM=</latexit>

encoded m0

<latexit sha1_base64="0wnPUQt89aJI4JVFunW8vuJm37E=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eKxgP6ANZbPZtGs3u2F3IpTQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxzdTv32E9OGK/mA45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgUa/cpXL1I0S5hEKogxXd9LMciJRk4Fm5R7mWEpoSMyYF1LJUmYCfLZtRP31CqRGyttS6I7U39P5CQxZpyEtjMhODSL3lT8z+tmGF8HOZdphkzS+aI4Ey4qd/q6G3HNKIqxJYRqbm916ZBoQtEGVLYh+IsvL5PWec2/rHn3F9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNUc6L8+58zFtXnGLmCP7A+fwBr/2PNA==</latexit>· · ·

<latexit sha1_base64="0wnPUQt89aJI4JVFunW8vuJm37E=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eKxgP6ANZbPZtGs3u2F3IpTQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxzdTv32E9OGK/mA45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgUa/cpXL1I0S5hEKogxXd9LMciJRk4Fm5R7mWEpoSMyYF1LJUmYCfLZtRP31CqRGyttS6I7U39P5CQxZpyEtjMhODSL3lT8z+tmGF8HOZdphkzS+aI4Ey4qd/q6G3HNKIqxJYRqbm916ZBoQtEGVLYh+IsvL5PWec2/rHn3F9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNUc6L8+58zFtXnGLmCP7A+fwBr/2PNA==</latexit>· · ·

<latexit sha1_base64="qWsvZe/VnLBvsPhWi65gBdU6ZZo=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNoFe5E1DJoYxnBmEByhL3NXLJk9/bY3RNCyI+wsVDE1t9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j94NCrTDBtMCaVbETUoeIINy63AVqqRykhgMxreTv3mE2rDVfJgRymGkvYTHnNGrZOaHSWxT0+75Ypf9WcgyyTISQVy1Lvlr05PsUxiYpmgxrQDP7XhmGrLmcBJqZMZTCkb0j62HU2oRBOOZ+dOyIlTeiRW2lViyUz9PTGm0piRjFynpHZgFr2p+J/Xzmx8HY55kmYWEzZfFGeCWEWmv5Me18isGDlCmebuVsIGVFNmXUIlF0Kw+PIyeTyvBpdV//6iUrvJ4yjCERzDGQRwBTW4gzo0gMEQnuEV3rzUe/HevY95a8HLZw7hD7zPH/RGj1E=</latexit>

!0
<latexit sha1_base64="I/TqXrB8j5kR7bE8gmYUHhhbe4U=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL1VBIR9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpQVcqvVLZrbozkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2anTsipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2hC8xZeXSfO86l1W3fuLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwCf441d</latexit>

r00

<latexit sha1_base64="7NaBGM/3heNYFDUhdgOBAQgwSPU=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSL1VBIR9Vj04rGC/ZA2lM120y7dbMLuRCihv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecJxwP6IDJULBKFrpsTukmOlJpdIrld2qOwNZJl5OypCj3it9dfsxSyOukElqTMdzE/QzqlEwySfFbmp4QtmIDnjHUkUjbvxsdvCEnFqlT8JY21JIZurviYxGxoyjwHZGFIdm0ZuK/3mdFMNrPxMqSZErNl8UppJgTKbfk77QnKEcW0KZFvZWwoZUU4Y2o6INwVt8eZk0z6veZdW9vyjXbvI4CnAMJ3AGHlxBDe6gDg1gEMEzvMKbo50X5935mLeuOPnMEfyB8/kDbxqQKg==</latexit>

r̂00

<latexit sha1_base64="FFTg1MEO+I5dOLQghT01hHzGDh0=">AAACB3icbVBNS8NAEN3Ur1q/oh4FWSyCp5KIqMeiF48VbC00IWy203bpZhN2N0IJuXnxr3jxoIhX/4I3/42bNgdtfbDs470ZZuaFCWdKO863VVlaXlldq67XNja3tnfs3b2OilNJoU1jHstuSBRwJqCtmebQTSSQKORwH46vC//+AaRisbjTkwT8iAwFGzBKtJEC+9BLRR9kKAmFzBuppPhdJvI8yDycB3bdaThT4EXilqSOSrQC+8vrxzSNQGjKiVI910m0nxGpGeWQ17xUgZkxJkPoGSpIBMrPpnfk+NgofTyIpXlC46n6uyMjkVKTKDSVEdEjNe8V4n9eL9WDSz9jIkk1CDobNEg51jEuQsF9JoFqPjGEUMnMrpiOiMlEm+hqJgR3/uRF0jltuOcN5/as3rwq46iiA3SETpCLLlAT3aAWaiOKHtEzekVv1pP1Yr1bH7PSilX27KM/sD5/ANpzme4=</latexit>| {z }
<latexit sha1_base64="QCO8r/xLnzZ0U9jhxfgAj06s2c0=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIxisyB2FWhJtLDGRjwQuZG9vDzbs7p27eySE8DtsLDTG1h9j579xgSsUfMkkL+/NZGZekHCmjet+O7mNza3tnfxuYW//4PCoeHzS0nGqCG2SmMeqE2BNOZO0aZjhtJMoikXAaTsY3c399pgqzWL5aCYJ9QUeSBYxgo2VfCpJHNIQlUWlUu4XS27VXQCtEy8jJcjQ6Be/emFMUkGlIRxr3fXcxPhTrAwjnM4KvVTTBJMRHtCupRILqv3p4ugZurBKiKJY2ZIGLdTfE1MstJ6IwHYKbIZ61ZuL/3nd1EQ3/pTJJDX2veWiKOXIxGieAAqZosTwiSWYKGZvRWSIFSbG5lSwIXirL6+TVq3qXVXdh1qpfpvFkYczOIdL8OAa6nAPDWgCgSd4hld4c8bOi/PufCxbc042cwp/4Hz+AAjBkPQ=</latexit>

encoded m00

Fig. 15. Merkle tree structure for 5-move conversation

Next, the dealer initiates a subprotocol to distribute each mj to each Pj as in ΠSecMsgDst, broad-
cast m′ to all parties as in ΠCompactBroadcast, and broadcast m′′ to all parties as in ΠCompactBroadcast.
As above in Section 7.1, this subprotocol has a send-echo-vote structure, and all echoing/voting is
done on the “global” root r̂′′, so that just one round of send-echo-vote suffices to distribute the mj ’s
and to broadcast m′,m′′. Analogously to what we did in Section 7.1, the dealer explicitly includes
the hash values r, r̂′, and r̂′′ in the send messages

We can characterize the security of protocol ΠDst5move in terms of an ideal functionality
FDst5move. To this functionality, the dealer submits a message vector m = (m1, . . . ,mn) and obtains
a random challenge ω, creating the partial conversation (m, ω). After this, the dealer submits a
message m′ and obtains a random challenge ω′, creating the extended conversation (m, ω,m′, ω′).
Finally, the dealer submits m′′, creating the full conversation (m, ω,m′, ω′,m′′), which is then dis-
seminated to all parties following the semantics of FSecMsgDst and FReliableBroadcast.

To model a “grinding” attack, the functionality also allows a corrupt dealer to repeatedly
submit a message vector m, obtaining a challenge ω and creating the partial conversation (m, ω).
The corrupt dealer may also repeatedly choose any such partial (m, ω) conversation, submit a
message m′, obtaining a challenge ω′ and creating the extended conversation (m, ω,m′, ω′). We
call either one of the above operations a grind on FDst5move. At some point, the corrupt dealer
may choose an extended conversation (m, ω,m′, ω′) and submit a message m′′, creating the full
conversation (m, ω,m′, ω′,m′′), which is then disseminated to all parties following the semantics of
FSecMsgDst and FReliableBroadcast.

We leave it to the reader to verify that ΠDst5move securely realizes the ideal functionality
FDst5move. Moreover, in the security reduction, the number of grinds on FDst5move made by the
simulator is bounded by the number of random oracle queries made by the real-world adversary.

52

We also leave it to the reader to verify that ΠDst5move enjoys completeness properties analogous
to those of ΠSecMsgDst and ΠReliableBroadcast.

We now sketch how to build a variant of Πravss1 protocol using ΠDst5move. First, recall that
we are assuming here that we instantiate Favss in Πravss1 with Πavss1. Next, observe that both
Πravss1 and the subprotocol Πavss1 use a voting step to express whether they are happy with the
information they have received. As noted after Theorem 6.1, we can safely combine these two voting
steps into a single one-sided vote. That is, each party Pj receives (mj , ω,m

′, ω′,m′′), and checks
if (mj , ω,m

′) is valid according to Πavss1, and checks if (m̄j , ω
′,m′′) is valid according to Πravss1

(here, m̄j is the same as mj , but with shares of blinding polynomials specific to Πavss1 filtered out).
A single one-sided vote (i.e., ΠOneSidedVote) can be used to attest that both of these checks pass.
We then use ΠDst5move to replace all steps other than local computations and this one-sided voting
step. The result is a protocol we denote by Πravss2.

We leave it to the reader to verify the following. Notation is as in Theorems 5.1 and 7.1, but
where R is the repetition parameter for Πavss1 and R′ is the repetition parameter for Πravss1:

Theorem 7.2 (Security of Πravss2). Assume Q ·
(
2n · χ(A,B, Θ)R + p(k−k′−1)·R′)

is negligible,
where Q is the number of grinds on FDst5move Then we have:

(i) Πravss2 securely realizes Fravss in the (FDst5move,FOneSidedVote)-hybrid model.

(ii) If Πravss2 is instantiated with concrete protocols for FDst5move and FOneSidedVote, that are
secure (i.e., securely realize the corresponding functionality) and complete (i.e., satisfy the
corresponding completeness property), then the resulting concrete protocol

(a) securely realizes Fravss, and

(b) satisfies the AVSS completeness property.

The communication complexity of Πravss2 is essentially the same as that of Πravss1. However,
in terms of rounds of communication, Πravss2 is significantly better. Indeed (on the happy path),
it needs just 5 rounds of communication (the same as Πavss1). In contrast, if we instantiate Πravss1

with ΠSecMsgDst, ΠCompactBroadcast, ΠOneSidedVote, and any 1-round protocol that realizes FBeacon,
we that it needs 3 rounds for ΠSecMsgDst in Πavss1, 1 round for the beacon in Πavss1, 3 rounds for the
ΠCompactBroadcast in Πavss1, 2 rounds for ΠOneSidedVote in Πavss1, 1 round for the beacon in Πravss1,
3 rounds for the ΠCompactBroadcast in Πravss1, 1 round for the simplified one-sided vote in Πravss1,
for a total of 14 rounds.

Just as for Πavss2, we speculate that Πravss2 can be further optimized so that the total number
of rounds is 4 rather than 5. In addition, we also speculate that Πravss2 can be implemented in such
a way that it is secure against adaptive corruptions in the random oracle model.

Acknowledgements

The work of the first author was partially done while he was employed at DFINITY. The work
of the second author was supported by CyberSecurity Research Flanders with reference number
VR20192203, by the FWO under an Odysseus project GOH9718N. The second author would like to
thank Jesper Buus Nielsen and Robin Jadoul for some discussions on various related topics whilst
the work in this paper was being carried out.

53

References

ACD+19. M. Abspoel, R. Cramer, I. Damg̊ard, D. Escudero, and C. Yuan. Efficient information-theoretic secure
multiparty computation over Z/pkZ via galois rings. In D. Hofheinz and A. Rosen, editors, TCC 2019:
17th Theory of Cryptography Conference, Part I, volume 11891 of Lecture Notes in Computer Science,
pages 471–501, Nuremberg, Germany, Dec. 1–5, 2019. Springer, Heidelberg, Germany.

ACD+20. M. Abspoel, R. Cramer, I. Damg̊ard, D. Escudero, M. Rambaud, C. Xing, and C. Yuan. Asymptotically
good multiplicative LSSS over Galois rings and applications to MPC over Z/pkZ. In S. Moriai and H. Wang,
editors, Advances in Cryptology – ASIACRYPT 2020, Part III, volume 12493 of Lecture Notes in Computer
Science, pages 151–180, Daejeon, South Korea, Dec. 7–11, 2020. Springer, Heidelberg, Germany.

AJM+23. I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern. Bingo: Adaptivity and asynchrony in
verifiable secret sharing and distributed key generation. In H. Handschuh and A. Lysyanskaya, editors,
Advances in Cryptology – CRYPTO 2023, Part I, volume 14081 of Lecture Notes in Computer Science,
pages 39–70, Santa Barbara, CA, USA, Aug. 20–24, 2023. Springer, Heidelberg, Germany.

BBB+23. A. Bandarupalli, A. Bhat, S. Bagchi, A. Kate, and M. Reiter. HashRand: Efficient asynchronous random
beacon without threshold cryptographic setup. Cryptology ePrint Archive, Paper 2023/1755, 2023. https:
//eprint.iacr.org/2023/1755.

BCG93. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In 25th Annual ACM
Symposium on Theory of Computing, pages 52–61, San Diego, CA, USA, May 16–18, 1993. ACM Press.

BGR98. M. Bellare, J. A. Garay, and T. Rabin. Batch verification with applications to cryptography and checking.
In C. L. Lucchesi and A. V. Moura, editors, LATIN 1998: Theoretical Informatics, 3rd Latin American
Symposium, volume 1380 of Lecture Notes in Computer Science, pages 170–191, Campinas, Brazil, Apr. 20–
24, 1998. Springer, Heidelberg, Germany.

BLS01. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, Advances
in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 514–532,
Gold Coast, Australia, Dec. 9–13, 2001. Springer, Heidelberg, Germany.

BLW08. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving compu-
tations. In S. Jajodia and J. López, editors, ESORICS 2008: 13th European Symposium on Research in
Computer Security, volume 5283 of Lecture Notes in Computer Science, pages 192–206, Málaga, Spain,
Oct. 6–8, 2008. Springer, Heidelberg, Germany.

Bol03. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-
group signature scheme. In Y. Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 31–46,
Miami, FL, USA, Jan. 6–8, 2003. Springer, Heidelberg, Germany.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM
Press.

Bra87. G. Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput., 75(2):130–143, 1987.
BTH06. Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In S. Halevi

and T. Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in
Computer Science, pages 305–328, New York, NY, USA, Mar. 4–7, 2006. Springer, Heidelberg, Germany.

BTH08. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In
R. Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lecture Notes
in Computer Science, pages 213–230, San Francisco, CA, USA, Mar. 19–21, 2008. Springer, Heidelberg,
Germany.

Can00. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/2000/067.

CDE+18. R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPD Z2k : Efficient MPC mod 2k for
dishonest majority. In H. Shacham and A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 769–798, Santa Barbara, CA, USA,
Aug. 19–23, 2018. Springer, Heidelberg, Germany.

CKL21. J. H. Cheon, D. Kim, and K. Lee. MHz2k: MPC from HE over Z2k with new packing, simpler reshare,
and better ZKP. In T. Malkin and C. Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part II,
volume 12826 of Lecture Notes in Computer Science, pages 426–456, Virtual Event, Aug. 16–20, 2021.
Springer, Heidelberg, Germany.

54

https://eprint.iacr.org/2023/1755
https://eprint.iacr.org/2023/1755
https://eprint.iacr.org/2000/067

CKPS01. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous broadcast protocols.
In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 524–541, Santa Barbara, CA, USA, Aug. 19–23, 2001. Springer, Heidelberg, Germany.

Coh16. R. Cohen. Asynchronous secure multiparty computation in constant time. In C.-M. Cheng, K.-M. Chung,
G. Persiano, and B.-Y. Yang, editors, PKC 2016: 19th International Conference on Theory and Practice
of Public Key Cryptography, Part II, volume 9615 of Lecture Notes in Computer Science, pages 183–207,
Taipei, Taiwan, Mar. 6–9, 2016. Springer, Heidelberg, Germany.

CP17. A. Choudhury and A. Patra. An efficient framework for unconditionally secure multiparty computation.
IEEE Trans. Inf. Theory, 63(1):428–468, 2017.

CP23. A. Choudhury and A. Patra. On the communication efficiency of statistically-secure asynchronous MPC
with optimal resilience. Journal of Cryptology, 36:13, 2023.

CT05. C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In P. Fraigniaud, editor, Dis-
tributed Computing, 19th International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005,
Proceedings, volume 3724 of Lecture Notes in Computer Science, pages 503–504. Springer, 2005.

DN07. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In A. Menezes,
editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
572–590, Santa Barbara, CA, USA, Aug. 19–23, 2007. Springer, Heidelberg, Germany.

DW20. S. Dolev and Z. Wang. Sodsbc: Stream of distributed secrets for quantum-safe blockchain. In IEEE
International Conference on Blockchain, Blockchain 2020, Rhodes, Greece, November 2-6, 2020, pages
247–256. IEEE, 2020.

DWZ23. S. Duan, X. Wang, and H. Zhang. FIN: practical signature-free asynchronous common subset in constant
time. In W. Meng, C. D. Jensen, C. Cremers, and E. Kirda, editors, Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-
30, 2023, pages 815–829. ACM, 2023.

DXR21. S. Das, Z. Xiang, and L. Ren. Asynchronous data dissemination and its applications. In G. Vigna and
E. Shi, editors, ACM CCS 2021: 28th Conference on Computer and Communications Security, pages
2705–2721, Virtual Event, Republic of Korea, Nov. 15–19, 2021. ACM Press.

DXR22. S. Das, Z. Xiang, and L. Ren. Balanced quadratic reliable broadcast and improved asynchronous verifiable
information dispersal. Cryptology ePrint Archive, Report 2022/052, 2022. https://eprint.iacr.org/

2022/052.

EXY22. D. Escudero, C. Xing, and C. Yuan. More efficient dishonest majority secure computation over Z2k via
galois rings. In Y. Dodis and T. Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part I,
volume 13507 of Lecture Notes in Computer Science, pages 383–412, Santa Barbara, CA, USA, Aug. 15–18,
2022. Springer, Heidelberg, Germany.

Feh98. S. Fehr. Span programs over rings and how to share a secret from a module, 1998. MSc Thesis, ETH
Zurich.

FY92. M. K. Franklin and M. Yung. Communication complexity of secure computation (extended abstract). In
24th Annual ACM Symposium on Theory of Computing, pages 699–710, Victoria, BC, Canada, May 4–6,
1992. ACM Press.

GS22. J. Groth and V. Shoup. Design and analysis of a distributed ECDSA signing service. Cryptology ePrint
Archive, Report 2022/506, 2022. https://eprint.iacr.org/2022/506.

HN06. M. Hirt and J. B. Nielsen. Robust multiparty computation with linear communication complexity. In
C. Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Computer
Science, pages 463–482, Santa Barbara, CA, USA, Aug. 20–24, 2006. Springer, Heidelberg, Germany.

HNP08. M. Hirt, J. B. Nielsen, and B. Przydatek. Asynchronous multi-party computation with quadratic commu-
nication. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,
editors, ICALP 2008: 35th International Colloquium on Automata, Languages and Programming, Part II,
volume 5126 of Lecture Notes in Computer Science, pages 473–485, Reykjavik, Iceland, July 7–11, 2008.
Springer, Heidelberg, Germany.

HS15. D. Hofheinz and V. Shoup. GNUC: A new universal composability framework. Journal of Cryptology,
28(3):423–508, July 2015.

JSv22. R. Jadoul, N. P. Smart, and B. van Leeuwen. MPC for Q2 access structures over rings and fields. In
R. AlTawy and A. Hülsing, editors, SAC 2021: 28th Annual International Workshop on Selected Areas
in Cryptography, volume 13203 of Lecture Notes in Computer Science, pages 131–151, Virtual Event,
Sept. 29 – Oct. 1, 2022. Springer, Heidelberg, Germany.

55

https://eprint.iacr.org/2022/052
https://eprint.iacr.org/2022/052
https://eprint.iacr.org/2022/506

KMTZ13. J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation. In
A. Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in
Computer Science, pages 477–498, Tokyo, Japan, Mar. 3–6, 2013. Springer, Heidelberg, Germany.

OSV20. E. Orsini, N. P. Smart, and F. Vercauteren. Overdrive2k: Efficient secure MPC over Z2k from somewhat
homomorphic encryption. In S. Jarecki, editor, Topics in Cryptology – CT-RSA 2020, volume 12006 of
Lecture Notes in Computer Science, pages 254–283, San Francisco, CA, USA, Feb. 24–28, 2020. Springer,
Heidelberg, Germany.

QBC13. G. Quintin, M. Barbier, and C. Chabot. On generalized Reed–Solomon codes over commutative and
noncommutative rings. IEEE Trans. Inf. Theory, 59(9):5882–5897, 2013.

SJK+17. E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer, and B. Ford.
Scalable bias-resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy, pages
444–460, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

YLF+22. T. Yurek, L. Luo, J. Fairoze, A. Kate, and A. Miller. hbacss: How to robustly share many secrets. In 29th
Annual Network and Distributed System Security Symposium, NDSS 2022, San Diego, California, USA,
April 24-28, 2022. The Internet Society, 2022. URL https://www.ndss-symposium.org/ndss-paper/

auto-draft-245/.
YPA+21. L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse. DispersedLedger: High-throughput Byzantine

consensus on variable bandwidth networks. CoRR, abs/2110.04371, 2021, 2110.04371. URL https:

//arxiv.org/abs/2110.04371.

56

https://www.ndss-symposium.org/ndss-paper/auto-draft-245/
https://www.ndss-symposium.org/ndss-paper/auto-draft-245/
http://arxiv.org/abs/2110.04371
https://arxiv.org/abs/2110.04371
https://arxiv.org/abs/2110.04371

	Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience
	1 Introduction
	1.1 Information Theoretic vs Computational Security
	1.2 The space in between: ``lightweight'' cryptography
	1.3 Fields vs Rings
	1.4 Application to AMPC
	1.5 The rest of the paper

	2 Polynomial interpolation, Reed-Solomon codes, and secret sharing
	2.1 Polynomial interpolation
	2.2 Reed-Solomon codes
	2.3 Asynchronous verifiable secret sharing
	2.3.1 Completeness.

	2.4 Higher-level secret sharing interfaces
	2.5 The number of roots of a polynomial

	3 Subprotocols
	3.1 Random Beacon
	3.1.1 Implementing a random beacon.
	3.1.2 Extending the output space of a random beacon.

	3.2 Reliable broadcast
	3.2.1 Bracha broadcast.
	3.2.2 Compact broadcast.
	3.2.3 Other reliable broadcast protocols.
	3.2.4 Relation to AVID.
	3.2.5 One-sided voting.

	3.3 Secure Message Distribution

	4 Building Secure Message Distribution
	4.1 Reliable Message Distribution
	4.1.1 Correctness and completeness.
	4.1.2 Communication complexity.
	4.1.3 Relation to AVID.

	4.2 Secure Key Distribution
	4.2.1 Correctness and completeness.
	4.2.2 Proving privacy under the linear hiding assumption.
	4.2.3 Domain separation strategies for H.
	4.2.4 Communication complexity.

	4.3 A Secure Message Distribution Protocol
	4.3.1 Security and completeness.
	4.3.2 Communication complexity.

	5 Our AVSS protocol
	5.1 Description of the protocol
	5.1.1 Additional commentary.

	5.2 Security analysis
	5.3 Communication Complexity
	5.3.1 The Happy Path.
	5.3.2 Finite Field Case.
	5.3.3 Galois Ring Case.
	5.3.4 The Unhappy Path.
	5.3.5 Message complexity.

	6 Restricting the secrets to a subring
	6.1 Auxiliary rings
	6.2 Two special cases
	6.3 The protocol
	6.4 Security analysis
	6.5 Communication complexity
	6.5.1 Setting k':-1.2mu=k.
	6.5.2 Setting R:-1.2mu=1.

	7 Random oracle implementations
	7.1 A random oracle version of avss1
	7.1.1 A subprotocol for disseminating 3-move conversations.
	7.1.2 An AVSS protocol.

	7.2 A random oracle version of ravss1

	Acknowledgements
	References

